A Reduced Basis Enrichment for the eXtended Finite Element Method
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 88-105.

Voir la notice de l'article provenant de la source EDP Sciences

This paper is devoted to the introduction of a new variant of the extended finite element method (Xfem) for the approximation of elastostatic fracture problems. This variant consists in a reduced basis strategy for the definition of the crack tip enrichment. It is particularly adapted when the asymptotic crack-tip displacement is complex or even unknown. We give a mathematical result of quasi-optimal a priori error estimate and some computational tests including a comparison with some other strategies.
DOI : 10.1051/mmnp/20094104

E. Chahine 1 ; P. Laborde 2 ; Y. Renard 3

1 Institut de Mathématiques, UMR CNRS 5215, GMM INSA Toulouse, Complexe scientifique de Rangueil, 31077 Toulouse Cedex 4, France
2 Institut de Mathématiques, UMR CNRS 5215, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 4, France
3 Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621, Villeurbanne, France
@article{MMNP_2009_4_1_a3,
     author = {E. Chahine and P. Laborde and Y. Renard},
     title = {A {Reduced} {Basis} {Enrichment} for the {eXtended} {Finite} {Element} {Method}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {88--105},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094104},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094104/}
}
TY  - JOUR
AU  - E. Chahine
AU  - P. Laborde
AU  - Y. Renard
TI  - A Reduced Basis Enrichment for the eXtended Finite Element Method
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 88
EP  - 105
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094104/
DO  - 10.1051/mmnp/20094104
LA  - en
ID  - MMNP_2009_4_1_a3
ER  - 
%0 Journal Article
%A E. Chahine
%A P. Laborde
%A Y. Renard
%T A Reduced Basis Enrichment for the eXtended Finite Element Method
%J Mathematical modelling of natural phenomena
%D 2009
%P 88-105
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094104/
%R 10.1051/mmnp/20094104
%G en
%F MMNP_2009_4_1_a3
E. Chahine; P. Laborde; Y. Renard. A Reduced Basis Enrichment for the eXtended Finite Element Method. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 88-105. doi : 10.1051/mmnp/20094104. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094104/

[1] R.A. Adams. Sobolev Spaces. Academic Press, 1975.

[2] E. Béchet, H. Minnebo, N. Moës, B. Burgardt Int. J. Numer. Meth. Engng. 2005 1033 1056

[3] T. Belytschko, N. Moës, S. Usui, C. Parimi Int. J. Numer. Meth. Engng. 2001 993 1013

[4] E. Chahine. Etude mathématique et numérique de méthodes d'éléments finis étendues pour le calcul en domaines fissurés. Thèse de Doctorat de l'INSA de Toulouse, 2008.

[5] E. Chahine, P. Laborde, Y. Renard. Crack-tip enrichment in the Xfem method using a cut-off function. To appear in Int. J. Numer. Meth. Engng.

[6] E. Chahine, P. Laborde, Y. Renard. Spider Xfem: an extended finite element variant for partially unknown crack-tip displacement. To appear in Europ. J. of Comp. Mech.

[7] E. Chahine, P. Laborde, Y. Renard. The extended finite element method with an integral matching condition. Submitted.

[8] P.G. Ciarlet. The finite element method for elliptic problems. Studies in Mathematics and its Applications No 4, North Holland, 1978.

[9] H. Ben Dhia. Multiscale mechanical problems : the Arlequin method. C. R. Acad. Sci., série I, Paris, 326 (1998), 899–904.

[10] M. Dupeux Mécanique et industrie 2004 441 450

[11] A. Ern, J.-L. Guermond. Éléments finis: théorie, applications, mise en œuvre. Mathématiques et Applications 36, SMAI, Springer-Verlag, 2002.

[12] R. Glowinski, J. He, J. Rappaz, J. Wagner. Approximation of multi-scale elliptic problems using patches of elements. C. R. Math. Acad. Sci., Paris, 337 (2003), 679–684.

[13] P. Grisvard. Problèmes aux limites dans les polygones - mode d'emploi. EDF Bull. Dirctions Etudes Rech. Sér. C. Math. Inform. 1, MR 87g:35073 (1986), 21–59.

[14] P. Grisvard. Singularities in boundary value problems. Masson, 1992.

[15] D.B.P. Huynh, A.T. Patera. Reduced basis approximation and a posteriori error estimation for stress intensity factors. Int. J. Numer. Meth. Engng. 72 (2007), 1219–1259.

[16] P. Laborde, Y. Renard, J. Pommier, M. Salaün Int. J. Numer. Meth. Engng. 2005 354 381

[17] J. Lemaitre, J.-L. Chaboche. Mechanics of Solid Materials. Cambridge University Press, 1994.

[18] J.L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications, volume 1. Dunod, 1968.

[19] Y. Maday, E.M. Rønquist. A reduced-basis element method. J. Sci. Comput., 17 (2002), (1-4), 447–459.

[20] J.M. Melenk, I. Babuška Comput. Meths. Appl. Mech. Engrg. 1996 289 314

[21] N. Moës, T. Belytschko Revue européenne des éléments finis 1999 131 150

[22] N. Moës, J. Dolbow, T. Belytschko Int. J. Numer. Meth. Engng. 1999 131 150

[23] A.K. Noor, J.M. Peters AIAA Journal 2002 455 462

[24] Y. Renard, J. Pommier. Getfem++. An open source generic C++ library for finite element methods, http://home.gna.org/getfem.

[25] G. Strang, G. Fix. An Analysis of the finite element method. Prentice-Hall, Englewood Cliffs, 1973.

[26] T. Strouboulis, I. Babuska, K. Copps Comput. Meths. Appl. Mech. Engrg. 2000 43 69

[27] T. Strouboulis, I. Babuska, K. Copps Int. J. Numer. Meth. Engng. 2000 1401 1417

[28] N. Sukumar, Z. Y. Huang, J.-H. Prévost, Z. Suo Int. J. Numer. Meth. Engng. 2004 1075 1102

Cité par Sources :