Voir la notice de l'article provenant de la source EDP Sciences
F. Ben Belgacem 1 ; C. Bernardi 2 ; A. Blouza 3 ; M. Vohralík 2
@article{MMNP_2009_4_1_a1, author = {F. Ben Belgacem and C. Bernardi and A. Blouza and M. Vohral{\'\i}k}, title = {On the {Unilateral} {Contact} {Between} {Membranes.} {Part} 1: {Finite} {Element} {Discretization} and {Mixed} {Reformulation}}, journal = {Mathematical modelling of natural phenomena}, pages = {21--43}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2009}, doi = {10.1051/mmnp/20094102}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/} }
TY - JOUR AU - F. Ben Belgacem AU - C. Bernardi AU - A. Blouza AU - M. Vohralík TI - On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation JO - Mathematical modelling of natural phenomena PY - 2009 SP - 21 EP - 43 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/ DO - 10.1051/mmnp/20094102 LA - en ID - MMNP_2009_4_1_a1 ER -
%0 Journal Article %A F. Ben Belgacem %A C. Bernardi %A A. Blouza %A M. Vohralík %T On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation %J Mathematical modelling of natural phenomena %D 2009 %P 21-43 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/ %R 10.1051/mmnp/20094102 %G en %F MMNP_2009_4_1_a1
F. Ben Belgacem; C. Bernardi; A. Blouza; M. Vohralík. On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 21-43. doi : 10.1051/mmnp/20094102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/
[1] SIAM J. Numer. Anal. 1987 777 787
,[2] F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík. A finite element discretization of the contact between two membranes. Math. Model. Numer. Anal. (2009) DOI: 10.1051/m2an:2008041.
[3] C. Bernardi, Y. Maday, F. Rapetti. Discrétisations variationnelles de problèmes aux limites elliptiques. Collection “Mathématiques et Applications" 45, Springer-Verlag, Berlin, 2004.
[4] Bull. Soc. Math. France 1968 153 180
,[5] F. Brezzi, W.W. Hager, P.-A. Raviart. Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math., 31 (1978/79), 1–16.
[6] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, 2002.
[7] Math. Comput. 1974 963 971
[8] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.
[9] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet J.-L. Lions eds. North-Holland, Amsterdam (1996), pp. 313–485.
[10] N. Kikuchi, J. T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics, 1988.
[11] Comm. Pure and Appl. Math. 1967 493 519
,[12] P.-A. Raviart, J.-M. Thomas. A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, Springer, 1977, pp. 292–315.
[13] Math. Model. Numer. Anal. 2004 177 201
, ,[14] C. R. Math. Acad. Sci. Paris 2008 687 690
Cité par Sources :