On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 21-43.

Voir la notice de l'article provenant de la source EDP Sciences

The contact between two membranes can be described by a system of variational inequalities, where the unknowns are the displacements of the membranes and the action of a membrane on the other one. We first perform the analysis of this system. We then propose a discretization, where the displacements are approximated by standard finite elements and the action by a local postprocessing. Such a discretization admits an equivalent mixed reformulation. We prove the well-posedness of the discrete problem and establish optimal a priori error estimates.
DOI : 10.1051/mmnp/20094102

F. Ben Belgacem 1 ; C. Bernardi 2 ; A. Blouza 3 ; M. Vohralík 2

1 L.M.A.C. (E.A. 2222), Département de Génie Informatique, Université de Technologie de Compiègne, Centre de Recherches de Royallieu, B.P. 20529, 60205 Compiègne Cedex, France
2 Laboratoire Jacques-Louis Lions, C.N.R.S. & Université Pierre et Marie Curie, B.C. 187, 4 place Jussieu, 75252 Paris Cedex 05, France
3 Laboratoire de Mathématiques Raphaël Salem (U.M.R. 6085 C.N.R.S.), Université de Rouen, avenue de l'Université, B.P. 12, 76801 Saint-Étienne-du-Rouvray, France
@article{MMNP_2009_4_1_a1,
     author = {F. Ben Belgacem and C. Bernardi and A. Blouza and M. Vohral{\'\i}k},
     title = {On the {Unilateral} {Contact} {Between} {Membranes.} {Part} 1: {Finite} {Element} {Discretization} and {Mixed} {Reformulation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {21--43},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/}
}
TY  - JOUR
AU  - F. Ben Belgacem
AU  - C. Bernardi
AU  - A. Blouza
AU  - M. Vohralík
TI  - On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 21
EP  - 43
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/
DO  - 10.1051/mmnp/20094102
LA  - en
ID  - MMNP_2009_4_1_a1
ER  - 
%0 Journal Article
%A F. Ben Belgacem
%A C. Bernardi
%A A. Blouza
%A M. Vohralík
%T On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation
%J Mathematical modelling of natural phenomena
%D 2009
%P 21-43
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/
%R 10.1051/mmnp/20094102
%G en
%F MMNP_2009_4_1_a1
F. Ben Belgacem; C. Bernardi; A. Blouza; M. Vohralík. On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 21-43. doi : 10.1051/mmnp/20094102. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094102/

[1] R.E. Bank, D.J. Rose SIAM J. Numer. Anal. 1987 777 787

[2] F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík. A finite element discretization of the contact between two membranes. Math. Model. Numer. Anal. (2009) DOI: 10.1051/m2an:2008041.

[3] C. Bernardi, Y. Maday, F. Rapetti. Discrétisations variationnelles de problèmes aux limites elliptiques. Collection “Mathématiques et Applications" 45, Springer-Verlag, Berlin, 2004.

[4] H. Brezis, G. Stampacchia Bull. Soc. Math. France 1968 153 180

[5] F. Brezzi, W.W. Hager, P.-A. Raviart. Error estimates for the finite element solution of variational inequalities. II. Mixed methods. Numer. Math., 31 (1978/79), 1–16.

[6] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics 40, Society for Industrial and Applied Mathematics, 2002.

[7] R.S. Falk Math. Comput. 1974 963 971

[8] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.

[9] J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. In: Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet J.-L. Lions eds. North-Holland, Amsterdam (1996), pp. 313–485.

[10] N. Kikuchi, J. T. Oden. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Studies in Applied and Numerical Mathematics, Society for Industrial and Applied Mathematics, 1988.

[11] J.-L. Lions, G. Stampacchia Comm. Pure and Appl. Math. 1967 493 519

[12] P.-A. Raviart, J.-M. Thomas. A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics, 606, Springer, 1977, pp. 292–315.

[13] L. Slimane, A. Bendali, P. Laborde Math. Model. Numer. Anal. 2004 177 201

[14] M. Vohralík C. R. Math. Acad. Sci. Paris 2008 687 690

Cité par Sources :