Voir la notice de l'article provenant de la source EDP Sciences
Z. Belhachmi 1 ; J.-M. Sac-Epée 1 ; S. Tahir 1
@article{MMNP_2009_4_1_a0, author = {Z. Belhachmi and J.-M. Sac-Ep\'ee and S. Tahir}, title = {Locking-Free {Finite} {Elements} for {Unilateral} {Crack} {Problems} in {Elasticity}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--20}, publisher = {mathdoc}, volume = {4}, number = {1}, year = {2009}, doi = {10.1051/mmnp/20094101}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/} }
TY - JOUR AU - Z. Belhachmi AU - J.-M. Sac-Epée AU - S. Tahir TI - Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity JO - Mathematical modelling of natural phenomena PY - 2009 SP - 1 EP - 20 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/ DO - 10.1051/mmnp/20094101 LA - en ID - MMNP_2009_4_1_a0 ER -
%0 Journal Article %A Z. Belhachmi %A J.-M. Sac-Epée %A S. Tahir %T Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity %J Mathematical modelling of natural phenomena %D 2009 %P 1-20 %V 4 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/ %R 10.1051/mmnp/20094101 %G en %F MMNP_2009_4_1_a0
Z. Belhachmi; J.-M. Sac-Epée; S. Tahir. Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 1-20. doi : 10.1051/mmnp/20094101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/
[1] J. Alberty, C. Carstensen, S. A. Funken, R. Klose. Matlab Implementation of the Finite Element Method in Elasticity. Berichtsreihe des Mathematischen Seminars Kiel, 00-21 (2000).
[2] D. N. Arnold, F. Brezzi, J. Douglas. PEERS: A new finite element for plane elasticity Japan J. Appl. Math., No. 1 (1984), 347–367.
[3] Math. Comp. 2003 83 104
,[4] SIAM J. Numer. Anal. 2005 1295 1320
, ,[5] F. Ben Belgacem. Numerical simulation of some variational inequalities arisen from unilateral contact problems by finite element method. Siam J. Numer. Anal, 37 (2000),No. 4, 1198–1216.
[6] Math. Models Methods Appl. Sci. 1999 287 303
, ,[7] Math. Comput. 2003 1117 1145
,[8] SIAM. J. Numer. Anal. 1998 1893 1916
,[9] Comput. Methods. Appl. Mech. Engrg. 1995 345 356
, , , ,[10] Numer. Math. 1985 217 235
, ,[11] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer Verlag, New York, Springer Series in Computational Mathematics, 15, 1991.
[12] Comput. Methods. Appl.Mech. Engrg. 2000 1701 1718
, , ,[13] P.G. Ciarlet. Basic Error Estimates for Elliptic Problems. In the Handbook of Numerical Analysis, Vol II, P.G. Ciarlet J.-L. Lions eds, North-Holland, (1991), 17–351.
[14] P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp., 71, (2001), No. 237, 1–25.
[15] G. Duvaut, J.-L. Lions. Les inéquations en mécanique et en physique. Dunod, 1972.
[16] V. Girault, P.-A. Raviart. Finite element methods for the Navier-Stokes equations, Theory and algorithms. Springer-Verlag 1986.
[17] R. Glowinski. Lectures on numerical methods for nonlinear variational problems. Springer, Berlin, 1980.
[18] J. Haslinger, I. Hlaváček. Contact between Elastic Bodies -2.Finite Element Analysis, Aplikace Matematiky, 26 (1981), 263–290.
[19] J. Haslinger, I. Hlaváček, J. Nečas. Numerical Methods for Unilateral Problems in Solid Mechanics, in the Handbook of Numerical Analysis, Vol IV, Part 2, P.G. Ciarlet J.-L. Lions eds, North-Holland, 1996.
[20] F. Hecht, O. Pironneau. FreeFem++, www.freefem.org
[21] Siam J. Numer. Anal. 2007 2012 2031
,[22] S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimates for nonlinear multibody contact problems. SIAM J. Numer. Anal., 43 (2005), No. 1, 156–173
[23] Quarterly of Applied Mathematics. 2004 401 422
,[24] N. Kikuchi, J. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, 1988.
[25] D. Kinderlehrer, G. Stamppachia. An introduction to variational inequalities and their applications, Academic Press, 1980.
[26] East-West J. Numer. Math. 1999 23 30
,[27] M2AN 2004 177 201
, ,[28] Numer. Math. 1988 513 538
[29] S. Tahir. Méthodes d'approximation par éléments finis et analyse a posteriori d'inéquations variationnelles modélisant des problèmes de fissures unilatérales en élasticité linéaire. Ph.D. Thesis, University of Metz, France (2006).
[30] S. Tahir, Z. Belhachmi. Mixed finite elements discretizations of some variational inequalities arising in elasticity problems in domains with cracks. Electron. J. Diff. Eqns., Conference 11 (2004), 33–40.
[31] Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems. Oxford. University. Press, Oxford 1993.
Cité par Sources :