Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source EDP Sciences

We consider mixed and hybrid variational formulations to the linearized elasticity system in domains with cracks. Inequality type conditions are prescribed at the crack faces which results in unilateral contact problems. The variational formulations are extended to the whole domain including the cracks which yields, for each problem, a smooth domain formulation. Mixed finite element methods such as PEERS or BDM methods are designed to avoid locking for nearly incompressible materials in plane elasticity. We study and implement discretizations based on such mixed finite element methods for the smooth domain formulations to the unilateral crack problems. We obtain convergence rates and optimal error estimates and we present some numerical experiments in agreement with the theoretical results.
DOI : 10.1051/mmnp/20094101

Z. Belhachmi 1 ; J.-M. Sac-Epée 1 ; S. Tahir 1

1 LMAM UMR7122, Université Paul Verlaine de Metz, Ile du Saulcy, 57045 Metz, France
@article{MMNP_2009_4_1_a0,
     author = {Z. Belhachmi and J.-M. Sac-Ep\'ee and S. Tahir},
     title = {Locking-Free {Finite} {Elements} for {Unilateral} {Crack} {Problems} in {Elasticity}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2009},
     doi = {10.1051/mmnp/20094101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/}
}
TY  - JOUR
AU  - Z. Belhachmi
AU  - J.-M. Sac-Epée
AU  - S. Tahir
TI  - Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
JO  - Mathematical modelling of natural phenomena
PY  - 2009
SP  - 1
EP  - 20
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/
DO  - 10.1051/mmnp/20094101
LA  - en
ID  - MMNP_2009_4_1_a0
ER  - 
%0 Journal Article
%A Z. Belhachmi
%A J.-M. Sac-Epée
%A S. Tahir
%T Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity
%J Mathematical modelling of natural phenomena
%D 2009
%P 1-20
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/
%R 10.1051/mmnp/20094101
%G en
%F MMNP_2009_4_1_a0
Z. Belhachmi; J.-M. Sac-Epée; S. Tahir. Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity. Mathematical modelling of natural phenomena, Tome 4 (2009) no. 1, pp. 1-20. doi : 10.1051/mmnp/20094101. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20094101/

[1] J. Alberty, C. Carstensen, S. A. Funken, R. Klose. Matlab Implementation of the Finite Element Method in Elasticity. Berichtsreihe des Mathematischen Seminars Kiel, 00-21 (2000).

[2] D. N. Arnold, F. Brezzi, J. Douglas. PEERS: A new finite element for plane elasticity Japan J. Appl. Math., No. 1 (1984), 347–367.

[3] Z. Belhachmi, F. Ben Belgacem Math. Comp. 2003 83 104

[4] Z. Belhachmi, J.M. Sac-Epée, J. Sokolowski SIAM J. Numer. Anal. 2005 1295 1320

[5] F. Ben Belgacem. Numerical simulation of some variational inequalities arisen from unilateral contact problems by finite element method. Siam J. Numer. Anal, 37 (2000),No. 4, 1198–1216.

[6] F. Ben Belgacem, P. Hild, P. Laborde Math. Models Methods Appl. Sci. 1999 287 303

[7] F. Ben Belgacem, Y. Renard Math. Comput. 2003 1117 1145

[8] C. Bernardi, V. Girault SIAM. J. Numer. Anal. 1998 1893 1916

[9] D. Braess, O. Klaas, R. Niekamp, E. Stein, F. Wobschal Comput. Methods. Appl. Mech. Engrg. 1995 345 356

[10] F. Brezzi, J. Douglas Jr, L.D. Marini Numer. Math. 1985 217 235

[11] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer Verlag, New York, Springer Series in Computational Mathematics, 15, 1991.

[12] C. Carstensen, G. Dolzmann, S.A. Funken, D.S. Helm Comput. Methods. Appl.Mech. Engrg. 2000 1701 1718

[13] P.G. Ciarlet. Basic Error Estimates for Elliptic Problems. In the Handbook of Numerical Analysis, Vol II, P.G. Ciarlet J.-L. Lions eds, North-Holland, (1991), 17–351.

[14] P. Coorevits, P. Hild, K. Lhalouani, T. Sassi. Mixed finite element methods for unilateral problems: convergence analysis and numerical studies. Math. Comp., 71, (2001), No. 237, 1–25.

[15] G. Duvaut, J.-L. Lions. Les inéquations en mécanique et en physique. Dunod, 1972.

[16] V. Girault, P.-A. Raviart. Finite element methods for the Navier-Stokes equations, Theory and algorithms. Springer-Verlag 1986.

[17] R. Glowinski. Lectures on numerical methods for nonlinear variational problems. Springer, Berlin, 1980.

[18] J. Haslinger, I. Hlaváček. Contact between Elastic Bodies -2.Finite Element Analysis, Aplikace Matematiky, 26 (1981), 263–290.

[19] J. Haslinger, I. Hlaváček, J. Nečas. Numerical Methods for Unilateral Problems in Solid Mechanics, in the Handbook of Numerical Analysis, Vol IV, Part 2, P.G. Ciarlet J.-L. Lions eds, North-Holland, 1996.

[20] F. Hecht, O. Pironneau. FreeFem++, www.freefem.org

[21] P. Hild, Y. Renard Siam J. Numer. Anal. 2007 2012 2031

[22] S. Hüeber, B.I. Wohlmuth. An optimal a priori error estimates for nonlinear multibody contact problems. SIAM J. Numer. Anal., 43 (2005), No. 1, 156–173

[23] A.M. Khludnev, J. Sokolowski Quarterly of Applied Mathematics. 2004 401 422

[24] N. Kikuchi, J. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, 1988.

[25] D. Kinderlehrer, G. Stamppachia. An introduction to variational inequalities and their applications, Academic Press, 1980.

[26] K. Lhalouani, T. Sassi East-West J. Numer. Math. 1999 23 30

[27] L. Slimane, A. Bendali, P. Laborde M2AN 2004 177 201

[28] R. Stenberg Numer. Math. 1988 513 538

[29] S. Tahir. Méthodes d'approximation par éléments finis et analyse a posteriori d'inéquations variationnelles modélisant des problèmes de fissures unilatérales en élasticité linéaire. Ph.D. Thesis, University of Metz, France (2006).

[30] S. Tahir, Z. Belhachmi. Mixed finite elements discretizations of some variational inequalities arising in elasticity problems in domains with cracks. Electron. J. Diff. Eqns., Conference 11 (2004), 33–40.

[31] Z.-H. Zhong. Finite Element Procedures for Contact-Impact Problems. Oxford. University. Press, Oxford 1993.

Cité par Sources :