Voir la notice de l'article provenant de la source EDP Sciences
G. Grise 1 ; M. Meyer-Hermann 1
@article{MMNP_2010_5_1_a10, author = {G. Grise and M. Meyer-Hermann}, title = {Towards {Sub-cellular} {Modeling} with {Delaunay} {Triangulation}}, journal = {Mathematical modelling of natural phenomena}, pages = {224--238}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {2010}, doi = {10.1051/mmnp/20083710}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/} }
TY - JOUR AU - G. Grise AU - M. Meyer-Hermann TI - Towards Sub-cellular Modeling with Delaunay Triangulation JO - Mathematical modelling of natural phenomena PY - 2010 SP - 224 EP - 238 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/ DO - 10.1051/mmnp/20083710 LA - en ID - MMNP_2010_5_1_a10 ER -
%0 Journal Article %A G. Grise %A M. Meyer-Hermann %T Towards Sub-cellular Modeling with Delaunay Triangulation %J Mathematical modelling of natural phenomena %D 2010 %P 224-238 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/ %R 10.1051/mmnp/20083710 %G en %F MMNP_2010_5_1_a10
G. Grise; M. Meyer-Hermann. Towards Sub-cellular Modeling with Delaunay Triangulation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 224-238. doi : 10.1051/mmnp/20083710. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/
[1] Two photon imaging of lymphocyte motility and antigen response in intact lymph node Science 2002 1869 1873
, , ,[2] Dynamic Imaging of T Cell-Dendritic Cell Interactions in Lymph Nodes Science 2002 1873 1876
, , ,[3] T cell activation in six dimensions Science 2002 1815 1817
[4] Putting proteins on the map Nat. Biotechnol. 2006 1223 1224
[5] Analyzing proteome topology and function by automated multidimensional fluorescence microscopy Nat. Biotechnol. 2006 1270 1278
[6] Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics Journal of Biol. Systems 1995 905 916
,[7] Deriving a germinal center lymphocyte migration model from two-photon data Journal of Exp. Med. 2008 3019 3029
, , , , ,[8] Germinal centres seen through the mathematical eye: B cell models on the catwalk Trends in Immunology 2009 157 164
, ,[9] Simulation of biological cell sorting using a two-dimensional extended Potts model Phys. Rev. Lett. 1992 2013 2016
,[10] Interpreting two-photon imaging data of lymphocyte motility Phys. Review E 2005 061912 061923
,[11] Cell migration and organization in the intestinal crypt using a lattice-free model Cell Prolif. 2001 253 266
, ,[12] Mechanisms of organogenesis of primary lymphoid follicles Int. Immunol. 2008 615 623
,[13] M. Bock, A. K. Tyagi, J.-U. Kreft, W. Alt. Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. arXiv:0901.4469v2 [physics.bio-ph].
[14] From single cells to tissue architecture – a bottom-up approach to modeling the spatio-temporal organisation of complex multi-cellular systems J. Math. Biol. 2009 261 283
, ,[15] Modeling multicellular systems using subcellular elements Mathematical Biosciences and Engineering 2005 611 622
[16] Modeling cell rheology with the Subcellular Element Model Phys. Biol. 2008 015002 015014
, ,[17] Cellular tensegrity I. Cell structure and hierarchical systems biology J. Cell Sci. 2003 1157 1173
[18] Tensegrity II. How structural networks inuence cellular information-processing networks J. Cell Sci. 2003 1397 1408
[19] Kinetic and dynamic Delaunay tetrahedralizations in three dimensions Comput. Phys., Commun. 2004 9 23
,[20] Parallel dynamic and kinetic regular triangulation in three dimensions Comput. Phys. Commun. 2005 86 108
, , ,[21] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics. John Wiley Sons, Inc., New York, 1992.
[22] A robust implementation for three-dimensional Delaunay triangulations Internat. J. Comput. Geom. Appl. 1998 255 276
[23] F. Cazals e J. Giesen. Delaunay triangulation based surface reconstruction: ideas and algorithms. Institut National De Recherche En Informatic et en AutomatiqueRapport de recherche No. 5393 (2004).
[24] Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation Curr. Top. Dev. Biol. 2008 373 399
[25] The treatment of non-flippable configurations in three dimensional regular triangulations WSEAS Trans. Syst. 2006 1100 1107
,[26] Multicellular tumor spheroid in an off-lattice Voronoi/Delaunay cell model Phys. Rev. E 2005 051910 051925
,[27] Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana Development 2004 4225 4237
, , ,[28] N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, New York, 1998.
[29] Surface reconstruction by Voronoi filtering Discrete and Computational Geometry 1999 481 504
,[30] G. Grise, M. Meyer-Hermann. Surface reconstruction using Delaunay triangulation for applications in life sciences. Submitted (2009).
[31] Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules Phys. Rev. 1967 98 103
[32] Computer experiments on classical fluids. II. Equilibrium correlation functions Phys. Rev. 1968 201 214
[33] On the sphere packing problem and the proof of Kepler’s conjecture Internat. J. Math. 1993 739 831
Cité par Sources :