Towards Sub-cellular Modeling with Delaunay Triangulation
Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 224-238.

Voir la notice de l'article provenant de la source EDP Sciences

In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with neighborhood relations defined via a Delaunay triangulation. The interacting sub-particles of a cell can assume specific roles – i.e., membrane sub-particle, internal sub-particle, organelles, etc –, distinguished by specific interaction potentials and, eventually, also by the use of modified interaction criteria. For example, membrane sub-particles may interact only on a two-dimensional surface embedded on three-dimensional space, described via a restricted Delaunay triangulation. The model can be used not only to study cell shape and movement, but also has the potential to investigate the coupling between internal space-resolved movement of molecules and determined cell behaviors.
DOI : 10.1051/mmnp/20083710

G. Grise 1 ; M. Meyer-Hermann 1

1 Frankfurt Institute for Advanced Studies, Goethe University Ruth-Moufang Strasse 1, 60438 Frankfurt, Germany
@article{MMNP_2010_5_1_a10,
     author = {G. Grise and M. Meyer-Hermann},
     title = {Towards {Sub-cellular} {Modeling} with {Delaunay} {Triangulation}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {224--238},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2010},
     doi = {10.1051/mmnp/20083710},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/}
}
TY  - JOUR
AU  - G. Grise
AU  - M. Meyer-Hermann
TI  - Towards Sub-cellular Modeling with Delaunay Triangulation
JO  - Mathematical modelling of natural phenomena
PY  - 2010
SP  - 224
EP  - 238
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/
DO  - 10.1051/mmnp/20083710
LA  - en
ID  - MMNP_2010_5_1_a10
ER  - 
%0 Journal Article
%A G. Grise
%A M. Meyer-Hermann
%T Towards Sub-cellular Modeling with Delaunay Triangulation
%J Mathematical modelling of natural phenomena
%D 2010
%P 224-238
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/
%R 10.1051/mmnp/20083710
%G en
%F MMNP_2010_5_1_a10
G. Grise; M. Meyer-Hermann. Towards Sub-cellular Modeling with Delaunay Triangulation. Mathematical modelling of natural phenomena, Tome 5 (2010) no. 1, pp. 224-238. doi : 10.1051/mmnp/20083710. http://geodesic.mathdoc.fr/articles/10.1051/mmnp/20083710/

[1] M. J. Miller, S. H. Wei, I. Parker, M. D. Cahalan Two photon imaging of lymphocyte motility and antigen response in intact lymph node Science 2002 1869 1873

[2] S. Stoll, J. Delon, T. M. Brotz, R. N. Germain Dynamic Imaging of T Cell-Dendritic Cell Interactions in Lymph Nodes Science 2002 1873 1876

[3] U. H. Von Andrian T cell activation in six dimensions Science 2002 1815 1817

[4] R. F. Murphy Putting proteins on the map Nat. Biotechnol. 2006 1223 1224

[5] W. Schubert Analyzing proteome topology and function by automated multidimensional fluorescence microscopy Nat. Biotechnol. 2006 1270 1278

[6] W. Alt, R. T. Tranquillo Basic morphogenetic system modeling shape changes of migrating cells: how to explain fluctuating lamellipodial dynamics Journal of Biol. Systems 1995 905 916

[7] M. T. Figge, A. Garin, M. Gunzer, M. Kosco-Vilbois, K.-M. Toellner, M. Meyer-Hermann Deriving a germinal center lymphocyte migration model from two-photon data Journal of Exp. Med. 2008 3019 3029

[8] M. Meyer-Hermann, M. T. Figge, K.-M. Toellner Germinal centres seen through the mathematical eye: B cell models on the catwalk Trends in Immunology 2009 157 164

[9] F. Graner, J. A. Glazier Simulation of biological cell sorting using a two-dimensional extended Potts model Phys. Rev. Lett. 1992 2013 2016

[10] M. E. Meyer-Hermann, P. K. Maini Interpreting two-photon imaging data of lymphocyte motility Phys. Review E 2005 061912 061923

[11] F. A. Meineke, C. S. Potten, M. Loeffler Cell migration and organization in the intestinal crypt using a lattice-free model Cell Prolif. 2001 253 266

[12] T. Beyer, M. Meyer-Hermann Mechanisms of organogenesis of primary lymphoid follicles Int. Immunol. 2008 615 623

[13] M. Bock, A. K. Tyagi, J.-U. Kreft, W. Alt. Generalized Voronoi tessellation as a model of two-dimensional cell tissue dynamics. arXiv:0901.4469v2 [physics.bio-ph].

[14] J. Galle, M. Hoffmann, G. Aust From single cells to tissue architecture – a bottom-up approach to modeling the spatio-temporal organisation of complex multi-cellular systems J. Math. Biol. 2009 261 283

[15] T. J. Newman Modeling multicellular systems using subcellular elements Mathematical Biosciences and Engineering 2005 611 622

[16] S. A. S, Ersius, T. J. Newman Modeling cell rheology with the Subcellular Element Model Phys. Biol. 2008 015002 015014

[17] D. E. Ingber Cellular tensegrity I. Cell structure and hierarchical systems biology J. Cell Sci. 2003 1157 1173

[18] D. E. Ingber Tensegrity II. How structural networks inuence cellular information-processing networks J. Cell Sci. 2003 1397 1408

[19] G. Schaller, M. Meyer-Hermann Kinetic and dynamic Delaunay tetrahedralizations in three dimensions Comput. Phys., Commun. 2004 9 23

[20] T. Beyer, G. Schaller, A. Deutsch, M. Meyer-Hermann Parallel dynamic and kinetic regular triangulation in three dimensions Comput. Phys. Commun. 2005 86 108

[21] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu. Spatial tessellations: concepts and applications of Voronoi diagrams. Probability and Statistics. John Wiley Sons, Inc., New York, 1992.

[22] E. Mücke A robust implementation for three-dimensional Delaunay triangulations Internat. J. Comput. Geom. Appl. 1998 255 276

[23] F. Cazals e J. Giesen. Delaunay triangulation based surface reconstruction: ideas and algorithms. Institut National De Recherche En Informatic et en AutomatiqueRapport de recherche No. 5393 (2004).

[24] M. Meyer-Hermann Delaunay-Object-Dynamics: cell mechanics with a 3D kinetic and dynamic weighted Delaunay-triangulation Curr. Top. Dev. Biol. 2008 373 399

[25] T. Beyer, M. Meyer-Hermann The treatment of non-flippable configurations in three dimensional regular triangulations WSEAS Trans. Syst. 2006 1100 1107

[26] G. Schaller, M. Meyer-Hermann Multicellular tumor spheroid in an off-lattice Voronoi/Delaunay cell model Phys. Rev. E 2005 051910 051925

[27] G. V. Reddy, M. G. Heisler, D. W. Ehrhardt, E. M. Meyerowitz Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana Development 2004 4225 4237

[28] N. Amenta, M. Bern, M. Kamvysselis. A new Voronoi-based surface reconstruction algorithm. SIGGRAPH ’98: Proceedings of the 25th annual conference on computer graphics and interactive techniques, ACM, New York, 1998.

[29] N. Amenta, M. Bern Surface reconstruction by Voronoi filtering Discrete and Computational Geometry 1999 481 504

[30] G. Grise, M. Meyer-Hermann. Surface reconstruction using Delaunay triangulation for applications in life sciences. Submitted (2009).

[31] L. Verlet Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules Phys. Rev. 1967 98 103

[32] L. Verlet Computer experiments on classical fluids. II. Equilibrium correlation functions Phys. Rev. 1968 201 214

[33] Wu-Yi Hsiang On the sphere packing problem and the proof of Kepler’s conjecture Internat. J. Math. 1993 739 831

Cité par Sources :