Voir la notice de l'article provenant de la source Numdam
The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several examples such as a forced pendulum, two coupled penduli, and the double pendulum.
@article{M2AN_2008__42_6_1047_0, author = {Gomes, Diogo A. and Oberman, Adam}, title = {Viscosity solutions methods for converse {KAM} theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1047--1064}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008035}, mrnumber = {2473319}, zbl = {1156.37015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/} }
TY - JOUR AU - Gomes, Diogo A. AU - Oberman, Adam TI - Viscosity solutions methods for converse KAM theory JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 1047 EP - 1064 VL - 42 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/ DO - 10.1051/m2an:2008035 LA - en ID - M2AN_2008__42_6_1047_0 ER -
%0 Journal Article %A Gomes, Diogo A. %A Oberman, Adam %T Viscosity solutions methods for converse KAM theory %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 1047-1064 %V 42 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/ %R 10.1051/m2an:2008035 %G en %F M2AN_2008__42_6_1047_0
Gomes, Diogo A.; Oberman, Adam. Viscosity solutions methods for converse KAM theory. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 6, pp. 1047-1064. doi : 10.1051/m2an:2008035. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/
[1] Mathematical aspects of classical and celestial mechanics. Springer-Verlag, Berlin (1997). Translated from the 1985 Russian original by A. Iacob, reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1993) MR 95d:58043a]. | Zbl | MR
, and ,[2] Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math. 52 (1999) 811-828. | Zbl | MR
,[3] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). | Zbl | MR
and ,[4] An analytic counterexample to the KAM theorem. Ergod. Theory Dyn. Syst. 20 (2000) 317-333. | Zbl | MR
,[5] An introduction to the Aubry-Mather theory. São Paulo Journal of Mathematical Sciences (to appear).
and ,[6] Lagrangian graphs, minimizing measures and Mañé's critical values. Geom. Funct. Anal. 8 (1998) 788-809. | Zbl | MR
, , and ,[7] Partial differential equations. American Mathematical Society, Providence, RI, USA (1998). | Zbl | MR
,[8] Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157 (2001) 1-33. | Zbl | MR
and ,[9] Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161 (2002) 271-305. | Zbl | MR
and ,[10] Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. | Zbl | MR
,[11] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. | Zbl | MR
,[12] Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1213-1216. | Zbl | MR
,[13] Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 267-270. | Zbl | MR
,[14] Existence of critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004) 363-388. | Zbl | MR
and ,[15] Controlled Markov processes and viscosity solutions. Springer-Verlag, New York (1993). | Zbl | MR
and ,[16] Analytic destruction of invariant circles. Ergod. Theory Dyn. Syst. 14 (1994) 267-298. | Zbl | MR
,[17] Construction of invariant measures supported within the gaps of Aubry-Mather sets. Ergod. Theory Dyn. Syst. 16 (1996) 51-86. | Zbl | MR
,[18] Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition (1980). | Zbl | MR
,[19] Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations 14 (2002) 345-357. | Zbl | MR
,[20] Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal. 35 (2003) 135-147 (electronic). | Zbl | MR
,[21] Duality principles for fully nonlinear elliptic equations, in Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl. 61, Birkhäuser, Basel (2005) 125-136. | MR
,[22] Computing the effective Hamiltonian using a variational approach. SIAM J. Contr. Opt. 43 (2004) 792-812 (electronic). | Zbl | MR
and ,[23] Lack of integrability via viscosity solution methods. Indiana Univ. Math. J. 53 (2004) 1055-1071. | Zbl | MR
and ,[24] Converse KAM theory for monotone positive symplectomorphisms. Nonlinearity 12 (1999) 1299-1322. | Zbl | MR
,[25] Closed orbits and converse KAM theory. Nonlinearity 3 (1990) 961-973. | Zbl | MR
,[26] Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Math. Appl. 56 (2003) 1501-1524. | Zbl | MR
and ,[27] Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988).
, and ,[28] Converse KAM theory, in Singular behavior and nonlinear dynamics, Vol. 1 (Sámos, 1988), World Sci. Publishing, Teaneck, USA (1989) 109-113. | MR
,[29] Converse KAM: theory and practice. Comm. Math. Phys. 98 (1985) 469-512. | Zbl | MR
and ,[30] Converse KAM theory for symplectic twist maps. Nonlinearity 2 (1989) 555-570. | Zbl | MR
, and ,[31] On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992) 623-638. | Zbl | MR
,[32] Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996) 273-310. | Zbl | MR
,[33] Minimal action measures for positive-definite Lagrangian systems, in IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol (1989) 466-468. | Zbl | MR
,[34] Minimal measures. Comment. Math. Helv. 64 (1989) 375-394. | Zbl | MR
,[35] Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. | Zbl | MR
,[36] Two approximations for effective hamiltonians arising from homogenization of Hamilton-Jacobi equations. Preprint (2003). | MR
,Cité par Sources :