Voir la notice de l'article provenant de la source Numdam
The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several examples such as a forced pendulum, two coupled penduli, and the double pendulum.
@article{M2AN_2008__42_6_1047_0, author = {Gomes, Diogo A. and Oberman, Adam}, title = {Viscosity solutions methods for converse {KAM} theory}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1047--1064}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008035}, mrnumber = {2473319}, zbl = {1156.37015}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/} }
TY - JOUR AU - Gomes, Diogo A. AU - Oberman, Adam TI - Viscosity solutions methods for converse KAM theory JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 1047 EP - 1064 VL - 42 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/ DO - 10.1051/m2an:2008035 LA - en ID - M2AN_2008__42_6_1047_0 ER -
%0 Journal Article %A Gomes, Diogo A. %A Oberman, Adam %T Viscosity solutions methods for converse KAM theory %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 1047-1064 %V 42 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008035/ %R 10.1051/m2an:2008035 %G en %F M2AN_2008__42_6_1047_0
Gomes, Diogo A.; Oberman, Adam. Viscosity solutions methods for converse KAM theory. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 6, pp. 1047-1064. doi: 10.1051/m2an:2008035
Cité par Sources :