Voir la notice de l'article provenant de la source Numdam
It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior than other isotropic stabilization methods. The capability of the method is illustrated by means of two numerical test problems.
@article{M2AN_2008__42_6_903_0, author = {Braack, Malte}, title = {A stabilized finite element scheme for the {Navier-Stokes} equations on quadrilateral anisotropic meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {903--924}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008032}, mrnumber = {2473313}, zbl = {1149.76026}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008032/} }
TY - JOUR AU - Braack, Malte TI - A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 903 EP - 924 VL - 42 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008032/ DO - 10.1051/m2an:2008032 LA - en ID - M2AN_2008__42_6_903_0 ER -
%0 Journal Article %A Braack, Malte %T A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 903-924 %V 42 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008032/ %R 10.1051/m2an:2008032 %G en %F M2AN_2008__42_6_903_0
Braack, Malte. A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 6, pp. 903-924. doi: 10.1051/m2an:2008032
Cité par Sources :