Voir la notice de l'article provenant de la source Numdam
A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving the biharmonic equation. Numerical results are provided confirming the analysis.
@article{M2AN_2008__42_2_175_0, author = {Zhang, Shangyou}, title = {A {C1-P2} finite element without nodal basis}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {175--192}, publisher = {EDP-Sciences}, volume = {42}, number = {2}, year = {2008}, doi = {10.1051/m2an:2008002}, mrnumber = {2405144}, zbl = {1145.65102}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008002/} }
TY - JOUR AU - Zhang, Shangyou TI - A C1-P2 finite element without nodal basis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2008 SP - 175 EP - 192 VL - 42 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008002/ DO - 10.1051/m2an:2008002 LA - en ID - M2AN_2008__42_2_175_0 ER -
%0 Journal Article %A Zhang, Shangyou %T A C1-P2 finite element without nodal basis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2008 %P 175-192 %V 42 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2008002/ %R 10.1051/m2an:2008002 %G en %F M2AN_2008__42_2_175_0
Zhang, Shangyou. A C1-P2 finite element without nodal basis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 42 (2008) no. 2, pp. 175-192. doi: 10.1051/m2an:2008002
Cité par Sources :