Voir la notice de l'article provenant de la source Numdam
This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.
@article{M2AN_2007__41_4_801_0, author = {Belhachmi, Zakaria and Bernardi, Christine and Karageorghis, Andreas}, title = {Mortar spectral element discretization of the {Laplace} and {Darcy} equations with discontinuous coefficients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {801--824}, publisher = {EDP-Sciences}, volume = {41}, number = {4}, year = {2007}, doi = {10.1051/m2an:2007035}, mrnumber = {2362915}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/} }
TY - JOUR AU - Belhachmi, Zakaria AU - Bernardi, Christine AU - Karageorghis, Andreas TI - Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2007 SP - 801 EP - 824 VL - 41 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/ DO - 10.1051/m2an:2007035 LA - en ID - M2AN_2007__41_4_801_0 ER -
%0 Journal Article %A Belhachmi, Zakaria %A Bernardi, Christine %A Karageorghis, Andreas %T Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2007 %P 801-824 %V 41 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/ %R 10.1051/m2an:2007035 %G en %F M2AN_2007__41_4_801_0
Belhachmi, Zakaria; Bernardi, Christine; Karageorghis, Andreas. Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 801-824. doi : 10.1051/m2an:2007035. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/
[1] Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R. Acad. Sci. Paris Série I 333 (2001) 693-698. | Zbl
and ,[2] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl
, and ,[3] The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173-197. | Zbl
,[4] Mortar spectral element methods for elliptic equations with discontinuous coefficients. Math. Models Methods Appl. Sci. 12 (2002) 497-524. | Zbl
and ,[5] Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485.
and ,[6] Spectral element discretizations of the Poisson equation with mixed boundary conditions. Appl. Math. Inform. 6 (2001) 1-29. | Zbl
and ,[7] Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl
and ,[8] Relèvements de traces préservant les polynômes. C.R. Acad. Sci. Paris Série I 315 (1992) 333-338. | Zbl
, and ,[9] A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | Zbl
, and ,[10] Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications 45. Springer-Verlag (2004). | Zbl | MR
, and ,[11] Basics and some applications of the mortar element method. GAMM - Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97-123.
, and ,[12] The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | Zbl | mathdoc-id
and ,[13] Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. | Zbl | mathdoc-id
and ,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl
and ,[15] Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91-115. | Zbl
and ,[16] An -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Zbl | mathdoc-id
,[17] NAG Library Mark 21, The Numerical Algorithms Group Ltd, Oxford (2004).
Cité par Sources :