Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 801-824.

Voir la notice de l'article provenant de la source Numdam

This paper deals with the mortar spectral element discretization of two equivalent problems, the Laplace equation and the Darcy system, in a domain which corresponds to a nonhomogeneous anisotropic medium. The numerical analysis of the discretization leads to optimal error estimates and the numerical experiments that we present enable us to verify its efficiency.

DOI : 10.1051/m2an:2007035
Classification : 65N35, 65N55
Keywords: Mortar method, spectral elements, Laplace equation, Darcy equation
@article{M2AN_2007__41_4_801_0,
     author = {Belhachmi, Zakaria and Bernardi, Christine and Karageorghis, Andreas},
     title = {Mortar spectral element discretization of the {Laplace} and {Darcy} equations with discontinuous coefficients},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {801--824},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {4},
     year = {2007},
     doi = {10.1051/m2an:2007035},
     mrnumber = {2362915},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/}
}
TY  - JOUR
AU  - Belhachmi, Zakaria
AU  - Bernardi, Christine
AU  - Karageorghis, Andreas
TI  - Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2007
SP  - 801
EP  - 824
VL  - 41
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/
DO  - 10.1051/m2an:2007035
LA  - en
ID  - M2AN_2007__41_4_801_0
ER  - 
%0 Journal Article
%A Belhachmi, Zakaria
%A Bernardi, Christine
%A Karageorghis, Andreas
%T Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2007
%P 801-824
%V 41
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/
%R 10.1051/m2an:2007035
%G en
%F M2AN_2007__41_4_801_0
Belhachmi, Zakaria; Bernardi, Christine; Karageorghis, Andreas. Mortar spectral element discretization of the Laplace and Darcy equations with discontinuous coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 41 (2007) no. 4, pp. 801-824. doi : 10.1051/m2an:2007035. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2007035/

[1] Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R. Acad. Sci. Paris Série I 333 (2001) 693-698. | Zbl

[2] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl

[3] F. Ben Belgacem, The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173-197. | Zbl

[4] C. Bernardi and N. Chorfi, Mortar spectral element methods for elliptic equations with discontinuous coefficients. Math. Models Methods Appl. Sci. 12 (2002) 497-524. | Zbl

[5] C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485.

[6] C. Bernardi and Y. Maday, Spectral element discretizations of the Poisson equation with mixed boundary conditions. Appl. Math. Inform. 6 (2001) 1-29. | Zbl

[7] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl

[8] C. Bernardi, M. Dauge and Y. Maday, Relèvements de traces préservant les polynômes. C.R. Acad. Sci. Paris Série I 315 (1992) 333-338. | Zbl

[9] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | Zbl

[10] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques et Applications 45. Springer-Verlag (2004). | Zbl | MR

[11] C. Bernardi, Y. Maday and F. Rapetti, Basics and some applications of the mortar element method. GAMM - Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97-123.

[12] S. Bertoluzza and V. Perrier, The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | Zbl | mathdoc-id

[13] S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. | Zbl | mathdoc-id

[14] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl

[15] Y. Maday and E.M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries. Comput. Methods Appl. Mech. Engrg. 80 (1990) 91-115. | Zbl

[16] N.G. Meyers, An L p -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Zbl | mathdoc-id

[17] NAG Library Mark 21, The Numerical Algorithms Group Ltd, Oxford (2004).

Cité par Sources :