Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 2, pp. 367-391

Voir la notice de l'article provenant de la source Numdam

We consider the lowest-order Raviart-Thomas mixed finite element method for second-order elliptic problems on simplicial meshes in two and three space dimensions. This method produces saddle-point problems for scalar and flux unknowns. We show how to easily and locally eliminate the flux unknowns, which implies the equivalence between this method and a particular multi-point finite volume scheme, without any approximate numerical integration. The matrix of the final linear system is sparse, positive definite for a large class of problems, but in general nonsymmetric. We next show that these ideas also apply to mixed and upwind-mixed finite element discretizations of nonlinear parabolic convection-diffusion-reaction problems. Besides the theoretical relationship between the two methods, the results allow for important computational savings in the mixed finite element method, which we finally illustrate on a set of numerical experiments.

DOI : 10.1051/m2an:2006013
Classification : 76M10, 76M12, 76S05
Keywords: mixed finite element method, saddle-point problem, finite volume method, second-order elliptic equation, nonlinear parabolic convection-diffusion-reaction equation
@article{M2AN_2006__40_2_367_0,
     author = {Vohral{\'\i}k, Martin},
     title = {Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {367--391},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {2},
     year = {2006},
     doi = {10.1051/m2an:2006013},
     mrnumber = {2241828},
     zbl = {1116.65121},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006013/}
}
TY  - JOUR
AU  - Vohralík, Martin
TI  - Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2006
SP  - 367
EP  - 391
VL  - 40
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006013/
DO  - 10.1051/m2an:2006013
LA  - en
ID  - M2AN_2006__40_2_367_0
ER  - 
%0 Journal Article
%A Vohralík, Martin
%T Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2006
%P 367-391
%V 40
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006013/
%R 10.1051/m2an:2006013
%G en
%F M2AN_2006__40_2_367_0
Vohralík, Martin. Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 2, pp. 367-391. doi: 10.1051/m2an:2006013

Cité par Sources :