An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 2, pp. 239-267

Voir la notice de l'article provenant de la source Numdam

Singularly perturbed reaction-diffusion problems exhibit in general solutions with anisotropic features, e.g. strong boundary and/or interior layers. This anisotropy is reflected in a discretization by using meshes with anisotropic elements. The quality of the numerical solution rests on the robustness of the a posteriori error estimator with respect to both, the perturbation parameters of the problem and the anisotropy of the mesh. The equilibrated residual method has been shown to provide one of the most reliable error estimates for the reaction-diffusion problem. Its modification suggested by Ainsworth and Babuška has been proved to be robust for the case of singular perturbation. In the present work we investigate the modified method on anisotropic meshes. The method in the form of Ainsworth and Babuška is shown here to fail on anisotropic meshes. We suggest a new modification based on the stretching ratios of the mesh elements. The resulting error estimator is equivalent to the equilibrated residual method in the case of isotropic meshes and is proved to be robust on anisotropic meshes as well. Among others, the equilibrated residual method involves the solution of an infinite dimensional local problem on each element. In practical computations an approximate solution to this local problem was successfully computed. Nevertheless, up to now no rigorous analysis has been done showing the appropriateness of any computable approximation. This demands special attention since an improper approximate solution to the local problem can be fatal for the robustness of the whole method. In the present work we provide one of the desired approximations. We prove that the method is not affected by the approximate solution of the local problem.

DOI : 10.1051/m2an:2006010
Classification : 65N15, 65N30, 65N50
Keywords: a posteriori error estimation, singular perturbations, reaction-diffusion problem, robustness, anisotropic solution, stretched elements
@article{M2AN_2006__40_2_239_0,
     author = {Grosman, Sergey},
     title = {An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {239--267},
     publisher = {EDP-Sciences},
     volume = {40},
     number = {2},
     year = {2006},
     doi = {10.1051/m2an:2006010},
     mrnumber = {2241822},
     zbl = {1120.65118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006010/}
}
TY  - JOUR
AU  - Grosman, Sergey
TI  - An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2006
SP  - 239
EP  - 267
VL  - 40
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006010/
DO  - 10.1051/m2an:2006010
LA  - en
ID  - M2AN_2006__40_2_239_0
ER  - 
%0 Journal Article
%A Grosman, Sergey
%T An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2006
%P 239-267
%V 40
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2006010/
%R 10.1051/m2an:2006010
%G en
%F M2AN_2006__40_2_239_0
Grosman, Sergey. An equilibrated residual method with a computable error approximation for a singularly perturbed reaction-diffusion problem on anisotropic finite element meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 40 (2006) no. 2, pp. 239-267. doi: 10.1051/m2an:2006010

Cité par Sources :