Voir la notice de l'article provenant de la source Numdam
We are concerned with the structure of the operator corresponding to the Lax-Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax-Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version of the initial data cannot increase by the application of the scheme. The usefulness of the recipe is confirmed by numerical tests.
@article{M2AN_2004__38_3_519_0, author = {Breu{\ss}, Michael}, title = {The correct use of the {Lax-Friedrichs} method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {519--540}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004027}, zbl = {1077.65089}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004027/} }
TY - JOUR AU - Breuß, Michael TI - The correct use of the Lax-Friedrichs method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2004 SP - 519 EP - 540 VL - 38 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004027/ DO - 10.1051/m2an:2004027 LA - en ID - M2AN_2004__38_3_519_0 ER -
%0 Journal Article %A Breuß, Michael %T The correct use of the Lax-Friedrichs method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2004 %P 519-540 %V 38 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004027/ %R 10.1051/m2an:2004027 %G en %F M2AN_2004__38_3_519_0
Breuß, Michael. The correct use of the Lax-Friedrichs method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 38 (2004) no. 3, pp. 519-540. doi : 10.1051/m2an:2004027. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2004027/
[1] Partial Differential Equations. American Mathematical Society (1998). | Zbl | MR
,[2] Hyperbolic systems of conservation laws. Ellipses, Edition Marketing (1991). | Zbl | MR
and ,[3] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996). | Zbl | MR
and ,[4] Weak solutions of nonlinear hyperbolic equations and their numerical approximation. Comm. Pure Appl. Math. 7 (1954) 159-193. | Zbl
,[5] Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. Math. Comp. 68 (1999) 1025-1055. | Zbl
and ,[6] Numerical Methods for Conservation Laws. Birkhäuser Verlag, 2nd edn. (1992). | Zbl | MR
,[7] Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002). | Zbl | MR
,[8] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-436. | Zbl
and ,Cité par Sources :