Voir la notice de l'article provenant de la source Numdam
In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.
@article{M2AN_2003__37_2_345_0, author = {Desvillettes, Laurent and Salvarani, Francesco}, title = {Characterization of collision kernels}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {345--355}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/m2an:2003030}, mrnumber = {1991205}, zbl = {1047.76114}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/} }
TY - JOUR AU - Desvillettes, Laurent AU - Salvarani, Francesco TI - Characterization of collision kernels JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 345 EP - 355 VL - 37 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/ DO - 10.1051/m2an:2003030 LA - en ID - M2AN_2003__37_2_345_0 ER -
%0 Journal Article %A Desvillettes, Laurent %A Salvarani, Francesco %T Characterization of collision kernels %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 345-355 %V 37 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/ %R 10.1051/m2an:2003030 %G en %F M2AN_2003__37_2_345_0
Desvillettes, Laurent; Salvarani, Francesco. Characterization of collision kernels. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 2, pp. 345-355. doi : 10.1051/m2an:2003030. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/
[1] Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327-355. | Zbl
, , and ,[2] On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. | Zbl | MR | mathdoc-id
and ,[3] The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443-476. | Zbl
,[4] The mathematical theory of dilute gases. Springer Verlag, New York (1994). | Zbl | MR
, and ,[5] Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1-22. | Zbl
,[6] A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173-1189. | Zbl
and ,[7] On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179-259. | Zbl
and ,[8] Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209-230. | Zbl
, and ,[9] Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).
,[10] Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967). | Zbl
and ,[11] The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). | Zbl
,[12] Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189-203. | Zbl
and ,[13] Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143-146. | Zbl
and ,[14] Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111. | Zbl
,[15] A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685-730. | Zbl
,Cité par Sources :