Characterization of collision kernels
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 2, pp. 345-355.

Voir la notice de l'article provenant de la source Numdam

In this paper we show how abstract physical requirements are enough to characterize the classical collision kernels appearing in kinetic equations. In particular Boltzmann and Landau kernels are derived.

DOI : 10.1051/m2an:2003030
Classification : 76P05
Keywords: Boltzmann, Landau, collision kernels
@article{M2AN_2003__37_2_345_0,
     author = {Desvillettes, Laurent and Salvarani, Francesco},
     title = {Characterization of collision kernels},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {345--355},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003030},
     mrnumber = {1991205},
     zbl = {1047.76114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/}
}
TY  - JOUR
AU  - Desvillettes, Laurent
AU  - Salvarani, Francesco
TI  - Characterization of collision kernels
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2003
SP  - 345
EP  - 355
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/
DO  - 10.1051/m2an:2003030
LA  - en
ID  - M2AN_2003__37_2_345_0
ER  - 
%0 Journal Article
%A Desvillettes, Laurent
%A Salvarani, Francesco
%T Characterization of collision kernels
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2003
%P 345-355
%V 37
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/
%R 10.1051/m2an:2003030
%G en
%F M2AN_2003__37_2_345_0
Desvillettes, Laurent; Salvarani, Francesco. Characterization of collision kernels. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 2, pp. 345-355. doi : 10.1051/m2an:2003030. http://geodesic.mathdoc.fr/articles/10.1051/m2an:2003030/

[1] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long-range interactions. Arch. Ration. Mech. Anal. 152 (2000) 327-355. | Zbl

[2] R. Alexandre and C. Villani, On the Landau approximation in plasma physics. To appear in Ann. I.H.P. An. non linéaire. | Zbl | MR | mathdoc-id

[3] A.V. Bobylev, The Boltzmann equation and the group transformations. Math. Models Methods Appl. Sci. 3 (1993) 443-476. | Zbl

[4] C. Cercignani, R. Illner and M. Pulvirenti, The mathematical theory of dilute gases. Springer Verlag, New York (1994). | Zbl | MR

[5] L. Desvillettes, Boltzmann's kernel and the spatially homogeneous Boltzmann equation. Riv. Mat. Univ. Parma 6 (2001) 1-22. | Zbl

[6] L. Desvillettes and V. Ricci, A rigorous derivation of a linear kinetic equation of Fokker-Planck type in the limit of grazing collisions. J. Statist. Phys. 104 (2001) 1173-1189. | Zbl

[7] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness. Comm. Partial Differential Equations 25 (2000) 179-259. | Zbl

[8] D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a random potential in two dimensions: Landau model. Comm. Math. Phys. 113 (1987) 209-230. | Zbl

[9] G. Gallavotti, Rigorous theory of the Boltzmann equation in the Lorentz gas. Nota interna No. 358, Istituto di Fisica, Università di Roma (1973).

[10] I.M. Guelfand and N.Y. Vilenkin, Les distributions, Tome IV, Applications de l'analyse harmonique. Dunod, Paris (1967). | Zbl

[11] L. Hörmander, The analysis of linear partial differential operators I. Springer Verlag, Berlin (1983). | Zbl

[12] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in the vacuum. Comm. Math. Phys. 105 (1986) 189-203. | Zbl

[13] R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for two- and three-dimensional rare gas in the vacuum: erratum and improved result. Comm. Math. Phys. 121 (1989) 143-146. | Zbl

[14] O. Lanford, Time evolution of large classical systems. Springer Verlag, Lecture Notes in Phys. 38 (1975) 1-111. | Zbl

[15] R.W. Preisendorfer, A mathematical foundation for radiative transfer. J. Math. Mech. 6 (1957) 685-730. | Zbl

Cité par Sources :