Finite volume methods for convection-diffusion equations with right-hand side in
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 705-724
Cet article a éte moissonné depuis la source Numdam
We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.
DOI :
10.1051/m2an:2002031
Classification :
65N12, 65N30
Keywords: finite volumes, convection-diffusion equations, noncoercivity, non-regular data
Keywords: finite volumes, convection-diffusion equations, noncoercivity, non-regular data
@article{M2AN_2002__36_4_705_0,
author = {Droniou, J\'er\^ome and Gallou\"et, Thierry},
title = {Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {705--724},
year = {2002},
publisher = {EDP-Sciences},
volume = {36},
number = {4},
doi = {10.1051/m2an:2002031},
mrnumber = {1932310},
zbl = {1070.65566},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/}
}
TY - JOUR
AU - Droniou, Jérôme
AU - Gallouët, Thierry
TI - Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
JO - ESAIM: Mathematical Modelling and Numerical Analysis
PY - 2002
SP - 705
EP - 724
VL - 36
IS - 4
PB - EDP-Sciences
UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/
DO - 10.1051/m2an:2002031
LA - en
ID - M2AN_2002__36_4_705_0
ER -
%0 Journal Article
%A Droniou, Jérôme
%A Gallouët, Thierry
%T Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
%J ESAIM: Mathematical Modelling and Numerical Analysis
%D 2002
%P 705-724
%V 36
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/
%R 10.1051/m2an:2002031
%G en
%F M2AN_2002__36_4_705_0
Droniou, Jérôme; Gallouët, Thierry. Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 705-724. doi: 10.1051/m2an:2002031
Cité par Sources :
