Finite volume methods for convection-diffusion equations with right-hand side in H -1
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 705-724

Voir la notice de l'article provenant de la source Numdam

We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.

DOI : 10.1051/m2an:2002031
Classification : 65N12, 65N30
Keywords: finite volumes, convection-diffusion equations, noncoercivity, non-regular data
@article{M2AN_2002__36_4_705_0,
     author = {Droniou, J\'er\^ome and Gallou\"et, Thierry},
     title = {Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {705--724},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {4},
     year = {2002},
     doi = {10.1051/m2an:2002031},
     mrnumber = {1932310},
     zbl = {1070.65566},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/}
}
TY  - JOUR
AU  - Droniou, Jérôme
AU  - Gallouët, Thierry
TI  - Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 705
EP  - 724
VL  - 36
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/
DO  - 10.1051/m2an:2002031
LA  - en
ID  - M2AN_2002__36_4_705_0
ER  - 
%0 Journal Article
%A Droniou, Jérôme
%A Gallouët, Thierry
%T Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 705-724
%V 36
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/
%R 10.1051/m2an:2002031
%G en
%F M2AN_2002__36_4_705_0
Droniou, Jérôme; Gallouët, Thierry. Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 705-724. doi: 10.1051/m2an:2002031

Cité par Sources :