Voir la notice de l'article provenant de la source Numdam
We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with right-hand side in the dual space of the natural energy space of the problem.
@article{M2AN_2002__36_4_705_0, author = {Droniou, J\'er\^ome and Gallou\"et, Thierry}, title = {Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {705--724}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002031}, mrnumber = {1932310}, zbl = {1070.65566}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/} }
TY - JOUR AU - Droniou, Jérôme AU - Gallouët, Thierry TI - Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$ JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 705 EP - 724 VL - 36 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/ DO - 10.1051/m2an:2002031 LA - en ID - M2AN_2002__36_4_705_0 ER -
%0 Journal Article %A Droniou, Jérôme %A Gallouët, Thierry %T Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$ %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 705-724 %V 36 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002031/ %R 10.1051/m2an:2002031 %G en %F M2AN_2002__36_4_705_0
Droniou, Jérôme; Gallouët, Thierry. Finite volume methods for convection-diffusion equations with right-hand side in $H^{-1}$. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 4, pp. 705-724. doi: 10.1051/m2an:2002031
Cité par Sources :