Voir la notice de l'article provenant de la source Numdam
In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is in general and when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.
@article{M2AN_2002__36_3_427_0, author = {Bastien, J\'er\^ome and Schatzman, Michelle}, title = {Numerical precision for differential inclusions with uniqueness}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {427--460}, publisher = {EDP-Sciences}, volume = {36}, number = {3}, year = {2002}, doi = {10.1051/m2an:2002020}, mrnumber = {1918939}, zbl = {1036.34012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/} }
TY - JOUR AU - Bastien, Jérôme AU - Schatzman, Michelle TI - Numerical precision for differential inclusions with uniqueness JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2002 SP - 427 EP - 460 VL - 36 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/ DO - 10.1051/m2an:2002020 LA - en ID - M2AN_2002__36_3_427_0 ER -
%0 Journal Article %A Bastien, Jérôme %A Schatzman, Michelle %T Numerical precision for differential inclusions with uniqueness %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2002 %P 427-460 %V 36 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/ %R 10.1051/m2an:2002020 %G en %F M2AN_2002__36_3_427_0
Bastien, Jérôme; Schatzman, Michelle. Numerical precision for differential inclusions with uniqueness. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 427-460. doi: 10.1051/m2an:2002020
Cité par Sources :