Numerical precision for differential inclusions with uniqueness
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 427-460

Voir la notice de l'article provenant de la source Numdam

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

DOI : 10.1051/m2an:2002020
Classification : 34A60, 34G25, 34K28, 47H05, 47J35, 65L70
Keywords: differential inclusions, existence and uniqueness, multivalued maximal monotone operator, sub-differential, numerical analysis, implicit Euler numerical scheme, frictions laws
@article{M2AN_2002__36_3_427_0,
     author = {Bastien, J\'er\^ome and Schatzman, Michelle},
     title = {Numerical precision for differential inclusions with uniqueness},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {427--460},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002020},
     mrnumber = {1918939},
     zbl = {1036.34012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/}
}
TY  - JOUR
AU  - Bastien, Jérôme
AU  - Schatzman, Michelle
TI  - Numerical precision for differential inclusions with uniqueness
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 427
EP  - 460
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/
DO  - 10.1051/m2an:2002020
LA  - en
ID  - M2AN_2002__36_3_427_0
ER  - 
%0 Journal Article
%A Bastien, Jérôme
%A Schatzman, Michelle
%T Numerical precision for differential inclusions with uniqueness
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 427-460
%V 36
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002020/
%R 10.1051/m2an:2002020
%G en
%F M2AN_2002__36_3_427_0
Bastien, Jérôme; Schatzman, Michelle. Numerical precision for differential inclusions with uniqueness. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 3, pp. 427-460. doi: 10.1051/m2an:2002020

Cité par Sources :