An optimum design problem in magnetostatics
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 2, pp. 223-239

Voir la notice de l'article provenant de la source Numdam

In this paper, we are interested in finding the optimal shape of a magnet. The criterion to maximize is the jump of the electromagnetic field between two different configurations. We prove existence of an optimal shape into a natural class of domains. We introduce a quasi-Newton type algorithm which moves the boundary. This method is very efficient to improve an initial shape. We give some numerical results.

DOI : 10.1051/m2an:2002012
Classification : 49J20, 49Q10, 65K10, 78A30
Keywords: shape optimization, optimum design, magnet, numerical examples
@article{M2AN_2002__36_2_223_0,
     author = {Henrot, Antoine and Villemin, Gr\'egory},
     title = {An optimum design problem in magnetostatics},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {223--239},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {2},
     year = {2002},
     doi = {10.1051/m2an:2002012},
     mrnumber = {1906816},
     zbl = {1054.49030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002012/}
}
TY  - JOUR
AU  - Henrot, Antoine
AU  - Villemin, Grégory
TI  - An optimum design problem in magnetostatics
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2002
SP  - 223
EP  - 239
VL  - 36
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002012/
DO  - 10.1051/m2an:2002012
LA  - en
ID  - M2AN_2002__36_2_223_0
ER  - 
%0 Journal Article
%A Henrot, Antoine
%A Villemin, Grégory
%T An optimum design problem in magnetostatics
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2002
%P 223-239
%V 36
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an:2002012/
%R 10.1051/m2an:2002012
%G en
%F M2AN_2002__36_2_223_0
Henrot, Antoine; Villemin, Grégory. An optimum design problem in magnetostatics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 36 (2002) no. 2, pp. 223-239. doi: 10.1051/m2an:2002012

Cité par Sources :