Voir la notice de l'article provenant de la source Numdam
In this paper, we consider N clusters of pairs of particles sedimenting in a viscous fluid. The particles are assumed to be rigid spheres and inertia of both particles and fluid are neglected. The distance between each two particles forming the cluster is comparable to their radii while the minimal distance between the pairs is of order N−1/2. We show that, at the mesoscopic level, the dynamics are modelled using a transport-Stokes equation describing the time evolution of the position x and orientation ξ of the clusters. Under the additional assumption that the minimal distance is of order N−1/3, we investigate the case where the orientation of each cluster is initially correlated to its position. In this case, a local existence and uniqueness result for the limit model is provided.
@article{M2AN_2020__54_5_1597_0, author = {Mecherbet, Amina}, title = {A model for suspension of clusters of particle pairs}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1597--1634}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020002}, mrnumber = {4127954}, zbl = {1466.76045}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2020002/} }
TY - JOUR AU - Mecherbet, Amina TI - A model for suspension of clusters of particle pairs JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1597 EP - 1634 VL - 54 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2020002/ DO - 10.1051/m2an/2020002 LA - en ID - M2AN_2020__54_5_1597_0 ER -
%0 Journal Article %A Mecherbet, Amina %T A model for suspension of clusters of particle pairs %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1597-1634 %V 54 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2020002/ %R 10.1051/m2an/2020002 %G en %F M2AN_2020__54_5_1597_0
Mecherbet, Amina. A model for suspension of clusters of particle pairs. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1597-1634. doi : 10.1051/m2an/2020002. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2020002/
[1] Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes. Arch. Ratio. Mech. Anal. 113 (1991) 209–259. | Zbl | MR | DOI
,[2] Sedimentation in a dilute suspension of spheres. J. Fluid Mech. 52 (1972) 245–268. | Zbl | DOI
,[3] A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1 (1949) 27. | Zbl | DOI
,[4] The -Wasserstein distance: local solutions and existence of optimal transport maps. SIAMJ. Math. Anal. 40 (2008) 1–20. | MR | Zbl | DOI
, and ,[5] The mean field limit for solid particles in a Navier-Stokes flow. J. Stat. Phys. 131 (2008) 941–967. | MR | Zbl | DOI
, and ,[6] The Theory of Polymer Dynamics. Oxford University Press (1986).
and ,[7] Eine neue bestimmung der moleküldimensionen. Ann. Physik. 19 (1906) 289–306. | JFM | DOI
,[8] Sedimentation in a dispersion with vertical inhomogeneities. J. Fluid Mech. 139 (1984) 145–171. | Zbl | DOI
,[9] An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. 2nd ed. Springer Monographs in Mathematics. Springer, New York (2011). | MR | Zbl
,[10] Analysis of the viscosity of dilute suspensions beyond Einstein’s formula. Preprint (2019). | arXiv | MR
and ,[11] A Physical Introduction to Suspension Dynamics. Cambridge Texts Applied Mathematics (2012). | MR | Zbl
and ,[12] A proof of einstein’s effective viscosity for a dilute suspension of spheres. SIAM J. Math. Anal. 44 (2012) 2120–2145. | MR | Zbl | DOI
and ,[13] On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5 (1959) 317–328. | MR | Zbl | DOI
,[14] Wasserstein distances for vortices approximation of Euler-type equations. Math. Models Methods Appl. Sci. 19 (2009) 1357–1384. | MR | Zbl | DOI
,[15] Particle approximation of Vlasov equations with singular forces: propagation of chaos. Ann. Sci. Éc. Norm. Supér. 48 (2015) 891–940. | MR | DOI
and ,[16] A comparison of macroscopic models describing the collective response of sedimenting rod-like particles in shear flows. Phys. D 337 (2016) 18–29. | MR | DOI
and ,[17] A kinetic model for the sedimentation of rod–like particles. Multiscale Model Simul. 15 (2017) 500–536. | MR | DOI
and ,[18] On the homogenization of the Stokes problem in a perforated domain. Arch. Ratio. Mech. Anal. 230 (2018) 1179–1228. | MR | DOI
,[19] Effective viscosity of a polydispersed suspension Preprint (2019). | arXiv | MR
, ,[20] On the effect of polydispersity and rotation on the Brinkman force induced by a cloud of particles on a viscous incompressible flow Preprint [math.AP] (2017). | arXiv | MR
, , ,[21] Sedimentation of inertialess particles in Stokes flows. Commun. Math. Phys. 360 (2018) 55–101. | MR | DOI
,[22] Sedimentation of particle suspensions in Stokes flow. Ph.D thesis, Rheinischen Friedrich-Wilhelms University, Bonn (2019).
,[23] The method of reflections, homogenization and screening for Poisson and Stokes equations in perforated domains. Arch. Ration. Mech. Anal. 227 (2018) 1165–1221. | MR | DOI
, ,[24] Identification of the dilute regime in particle sedimentation. Commun. Math. Phys. 250 (2004) 415–432. | MR | Zbl | DOI
and ,[25] Calculation of the resistance and mobility functions for two unequal spheres in low-Reynolds-number flow. J. Fluid Mech. 139 (1984) 261–290. | Zbl | DOI
and ,[26] Extremum principles for slow viscous flows with applications to suspensions. J. Fluid Mech. 30 (1967) 97–125. | Zbl | DOI
, and ,[27] Microhydrodynamics: Principles and Selected Applications. Courier Corporation (2005).
and ,[28] On the method of reflections. Available at: https://hal.archives-ouvertes.fr/hal-01439871 (2017)..
, , ,[29] Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics. Sci. China Math. 55 (2012) 353–384. | MR | Zbl | DOI
and ,[30] Einstein-like approximation for homogenization with small concentration. II. Navier-Stokes equation. Nonlinear Anal. 9 (1985) 1255–1268. | MR | Zbl | DOI
and ,[31] Convergence of a multiple reflection method for calculating Stokes flow in a suspension. Soc. Ind. Appl. Math. 49 (1989) 1635–1651. | MR | Zbl | DOI
,[32] Sedimentation of particles in Stokes flow. Kinet. Relat. Models 12 (2019) 995–1044. | MR | DOI
,[33] A local version of Einstein’s formula for the effective viscosity of suspensions. Preprint (2019) 5. | arXiv | MR
and ,[34] On the macroscopic description of slow viscous flow past a random array of spheres. J. Stat. Phys. 44 (1986) 849–863. | MR | Zbl | DOI
,[35] Particle distribution functions in suspensions. Phys. Fluids A 1 (1989) 1632–1641. | MR | Zbl | DOI
and ,[36] Einstein-like approximation for homogenization with small concentration. I. Elliptic problems. Nonlinear Anal. 9 (1985) 1243–1254. | MR | Zbl | DOI
,[37] Über die Wechselwirkung von Kugeln, die sich in einer zähen Flüssigkeit bewegen. Bull. Acad. Sci. Cracovie A 1 (1911) 28–39. | JFM
,Cité par Sources :