Voir la notice de l'article provenant de la source Numdam
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.
Gardini, Francesca 1 ; Manzini, Gianmarco 1 ; Vacca, Giuseppe 1
@article{M2AN_2019__53_3_749_0, author = {Gardini, Francesca and Manzini, Gianmarco and Vacca, Giuseppe}, title = {The nonconforming {Virtual} {Element} {Method} for eigenvalue problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {749--774}, publisher = {EDP-Sciences}, volume = {53}, number = {3}, year = {2019}, doi = {10.1051/m2an/2018074}, mrnumber = {3959470}, zbl = {1431.65214}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/} }
TY - JOUR AU - Gardini, Francesca AU - Manzini, Gianmarco AU - Vacca, Giuseppe TI - The nonconforming Virtual Element Method for eigenvalue problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 749 EP - 774 VL - 53 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/ DO - 10.1051/m2an/2018074 LA - en ID - M2AN_2019__53_3_749_0 ER -
%0 Journal Article %A Gardini, Francesca %A Manzini, Gianmarco %A Vacca, Giuseppe %T The nonconforming Virtual Element Method for eigenvalue problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 749-774 %V 53 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/ %R 10.1051/m2an/2018074 %G en %F M2AN_2019__53_3_749_0
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe. The nonconforming Virtual Element Method for eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 749-774. doi : 10.1051/m2an/2018074. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/
[1] Sobolev spaces. In Vol. 65 of Pure and Applied Mathematics. Academic Press, New York-London (1975). | MR | Zbl
,[2] Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London (1965). | MR | Zbl
,[3] Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI
, , , and ,[4] A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | MR | Zbl | DOI
, , and ,[5] The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. | MR | Zbl | DOI
, and ,[6] A stress/displacement virtual element method for plane elasticity problems. Comput. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | MR | Zbl | DOI
, , and ,[7] The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | MR | Zbl | mathdoc-id | DOI
, and ,[8] Eigenvalue problems. In: Handbook of Numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 641–787. | Zbl | MR
and ,[9] Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | Zbl | MR | DOI
, , , , and ,[10] Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | Zbl | MR | DOI
, and ,[11] Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | Zbl | mathdoc-id | MR | DOI
and ,[12] A virtual element method for the acoustic vibration problem, Numer. Math. 136 (2017) 725–763. | Zbl | MR | DOI
, , and ,[13] Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39 (2018) 315–334. | Zbl | MR | DOI
, , , and ,[14] Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | Zbl | MR | DOI
, , and ,[15] High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | Zbl | MR | DOI
, and ,[16] Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | Zbl | MR | DOI
, and ,[17] Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | Zbl | mathdoc-id | MR | DOI
, and ,[18] A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2013) 759–781. | Zbl | MR | DOI
and ,[19] A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | Zbl | MR | DOI
, , , and ,[20] Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | Zbl | MR | DOI
,[21] Poincaré-Friedrichs inequalities for piecewise functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | Zbl | MR | DOI
,[22] Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | Zbl | MR | DOI
, and ,[23] The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). | Zbl | MR
and ,[24] Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | Zbl | mathdoc-id | MR | DOI
, and ,[25] Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | Zbl | MR | DOI
and ,[26] Spectral approximation of elliptic operators by the Hybrid High-Order Method. J. Math. Comp. 88 (2019) 1559–1586. | Zbl | MR | DOI
, , and ,[27] Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200 (2011) 1150–1160. | Zbl | MR | DOI
, and ,[28] A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | Zbl | MR | DOI
, , and ,[29] The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | Zbl | MR | DOI
, and ,[30] Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | Zbl | MR | DOI
, , and ,[31] Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | Zbl | MR
, and ,[32] Basic principles of virtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26 (2016) 1567–1598. | Zbl | MR | DOI
, , and ,[33] Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017) 148–192. | Zbl | MR | DOI
, and ,[34] Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1). In Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 17–351. | Zbl | MR | DOI
,[35] Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | Zbl | mathdoc-id | MR | DOI
, and ,[36] Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Available at: http://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004).
,[37] An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | Zbl | MR | DOI
, and ,[38] Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. | Zbl | MR | DOI
, and ,[39] Mathematical aspects of discontinuous Galerkin methods. In Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | Zbl | MR | DOI
and ,[40] Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | Zbl | MR
and ,[41] Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | Zbl | mathdoc-id | MR | DOI
and ,[42] Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | Zbl | MR | DOI
and ,[43] Singularities in boundary value problems and exact controllability of hyperbolic systems. In: Optimization, Optimal Control and Partial Differential Equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | Zbl | MR | DOI
,[44] Perturbation Theory for Linear Operators. 2nd edition. Springer-Verlag, Berlin (1976). | Zbl | MR
,[45] High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272 (2014) 360–385. | Zbl | MR | DOI
and ,[46] Non-conforming harmonic virtual element method: -and -versions. J. Sci. Comput. 77 (2018) 1874–1908. | Zbl | MR | DOI
, and ,[47] A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | Zbl | MR | DOI
, and ,[48] A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74 (2017) 2172–2190. | Zbl | MR | DOI
, and ,[49] A virtual element method for the vibration problem of kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | Zbl | mathdoc-id | MR | DOI
, and ,[50] PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45 (2012) 309–328. | Zbl | MR | DOI
, , and ,[51] Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | Zbl | MR | DOI
,[52] An H1-conforming virtual element for darcy and brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | Zbl | MR | DOI
,[53] A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | Zbl | MR | DOI
, and ,Cité par Sources :