The nonconforming Virtual Element Method for eigenvalue problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 749-774.

Voir la notice de l'article provenant de la source Numdam

We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.

DOI : 10.1051/m2an/2018074
Classification : 65N30, 65N25
Keywords: Nonconforming virtual element, eigenvalue problem, polygonal meshes

Gardini, Francesca 1 ; Manzini, Gianmarco 1 ; Vacca, Giuseppe 1

1
@article{M2AN_2019__53_3_749_0,
     author = {Gardini, Francesca and Manzini, Gianmarco and Vacca, Giuseppe},
     title = {The nonconforming {Virtual} {Element} {Method} for eigenvalue problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {749--774},
     publisher = {EDP-Sciences},
     volume = {53},
     number = {3},
     year = {2019},
     doi = {10.1051/m2an/2018074},
     mrnumber = {3959470},
     zbl = {1431.65214},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/}
}
TY  - JOUR
AU  - Gardini, Francesca
AU  - Manzini, Gianmarco
AU  - Vacca, Giuseppe
TI  - The nonconforming Virtual Element Method for eigenvalue problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2019
SP  - 749
EP  - 774
VL  - 53
IS  - 3
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/
DO  - 10.1051/m2an/2018074
LA  - en
ID  - M2AN_2019__53_3_749_0
ER  - 
%0 Journal Article
%A Gardini, Francesca
%A Manzini, Gianmarco
%A Vacca, Giuseppe
%T The nonconforming Virtual Element Method for eigenvalue problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2019
%P 749-774
%V 53
%N 3
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/
%R 10.1051/m2an/2018074
%G en
%F M2AN_2019__53_3_749_0
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe. The nonconforming Virtual Element Method for eigenvalue problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 3, pp. 749-774. doi : 10.1051/m2an/2018074. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018074/

[1] R.A. Adams, Sobolev spaces. In Vol. 65 of Pure and Applied Mathematics. Academic Press, New York-London (1975). | MR | Zbl

[2] S. Agmon, Lectures on elliptic boundary value problems. In Vol. 2 of Van Nostrand Mathematical Studies. D. Van Nostrand Co., Inc., Princeton, NJ-Toronto-London (1965). | MR | Zbl

[3] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl. 66 (2013) 376–391. | MR | Zbl | DOI

[4] P.F. Antonietti, L. Beirão Da Veiga, S. Scacchi and M. Verani, A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54 (2016) 34–56. | MR | Zbl | DOI

[5] P.F. Antonietti, G. Manzini and M. Verani, The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28 (2018) 387–407. | MR | Zbl | DOI

[6] E. Artioli, S. De Miranda, C. Lovadina and L. Patruno, A stress/displacement virtual element method for plane elasticity problems. Comput. Meth. Appl. Mech. Eng. 325 (2017) 155–174. | MR | Zbl | DOI

[7] B. Ayuso De Dios, K. Lipnikov and G. Manzini, The nonconforming virtual element method. ESAIM: M2AN 50 (2016) 879–904. | MR | Zbl | mathdoc-id | DOI

[8] I. Babuška and J. Osborn, Eigenvalue problems. In: Handbook of Numerical Analysis. Handb. Numer. Anal. II. North-Holland, Amsterdam (1991) 641–787. | Zbl | MR

[9] L. Beirão Da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23 (2013) 199–214. | Zbl | MR | DOI

[10] L. Beirão Da Veiga, K. Lipnikov and G. Manzini, Arbitrary-order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49 (2011) 1737–1760. | Zbl | MR | DOI

[11] L. Beirão Da Veiga and G. Manzini, Residual a posteriori error estimation for the virtual element method for elliptic problems. ESAIM: M2AN 49 (2015) 577–599. | Zbl | mathdoc-id | MR | DOI

[12] L. Beirão Da Veiga, D. Mora, G. Rivera and R. Rodriguez, A virtual element method for the acoustic vibration problem, Numer. Math. 136 (2017) 725–763. | Zbl | MR | DOI

[13] L. Beirão Da Veiga, F. Brezzi, F. Dassi, L.D. Marini and A. Russo, Serendipity virtual elements for general elliptic equations in three dimensions. Chin. Ann. Math. Ser. B 39 (2018) 315–334. | Zbl | MR | DOI

[14] L. Beirão Da Veiga, F. Brezzi, L.D. Marini and A. Russo, Serendipity nodal vem spaces. Comput. Fluids 141 (2016) 2–12. | Zbl | MR | DOI

[15] L. Beirão Da Veiga, F. Dassi and A. Russo, High-order virtual element method on polyhedral meshes. Comput. Math. Appl. 74 (2017) 1110–1122. | Zbl | MR | DOI

[16] L. Beirão Da Veiga, C. Lovadina and A. Russo, Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27 (2017) 2557–2594. | Zbl | MR | DOI

[17] L. Beirão Da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51 (2017) 509–535. | Zbl | mathdoc-id | MR | DOI

[18] L. Beirão Da Veiga and G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34 (2013) 759–781. | Zbl | MR | DOI

[19] M.F. Benedetto, S. Berrone, A. Borio, S. Pieraccini and S. Scialò, A hybrid mortar virtual element method for discrete fracture network simulations. J. Comput. Phys. 306 (2016) 148–166. | Zbl | MR | DOI

[20] D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. | Zbl | MR | DOI

[21] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H 1 1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. | Zbl | MR | DOI

[22] S.C. Brenner, Q. Guan and L. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math. 17 (2017) 553–574. | Zbl | MR | DOI

[23] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3rd edition. In Vol. 15 of Texts in Applied Mathematics. Springer, New York, NY (2008). | Zbl | MR

[24] F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite differences for elliptic problems. ESAIM: M2AN 43 (2009) 277–295. | Zbl | mathdoc-id | MR | DOI

[25] F. Brezzi and L.D. Marini, Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253 (2013) 455–462. | Zbl | MR | DOI

[26] V. Calo, M. Cicuttin, Q. Deng and A. Ern, Spectral approximation of elliptic operators by the Hybrid High-Order Method. J. Math. Comp. 88 (2019) 1559–1586. | Zbl | MR | DOI

[27] A. Cangiani, F. Gardini and G. Manzini, Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200 (2011) 1150–1160. | Zbl | MR | DOI

[28] A. Cangiani, E.H. Georgoulis, T. Pryer and O.J. Sutton, A posteriori error estimates for the virtual element method. Numer. Math. 137 (2017) 857–893. | Zbl | MR | DOI

[29] A. Cangiani, V. Gyrya and G. Manzini, The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54 (2016) 3411–3435. | Zbl | MR | DOI

[30] A. Cangiani, G. Manzini, A. Russo and N. Sukumar, Hourglass stabilization and the virtual element method. Int. J. Numer. Meth. Eng. 102 (2015) 404–436. | Zbl | MR | DOI

[31] A. Cangiani, G. Manzini and O.J. Sutton, Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37 (2017) 1317–1354. | Zbl | MR

[32] A. Chernov, L. Beirão Da Veiga, L. Mascotto and A. Russo, Basic principles of h p virtual elements on quasiuniform meshes. Math. Models Methods Appl. Sci. 26 (2016) 1567–1598. | Zbl | MR | DOI

[33] H. Chi, L. Beirão Da Veiga and G.H. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations. Comput. Methods Appl. Mech. Eng. 318 (2017) 148–192. | Zbl | MR | DOI

[34] P. Ciarlet, Basic error estimates for elliptic problems. In: Finite Element Methods (Part 1). In Vol. 2 of Handbook of Numerical Analysis. Elsevier (1991) 17–351. | Zbl | MR | DOI

[35] B. Cockburn, D.A. Di Pietro and A. Ern, Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM: M2AN 50 (2016) 635–650. | Zbl | mathdoc-id | MR | DOI

[36] M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. Available at: http://perso.univ-rennes1.fr/monique.dauge/benchmax.html (2004).

[37] D. Di Pietro, A. Ern and S. Lemaire, An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14 (2014) 461–472. | Zbl | MR | DOI

[38] D.A. Di Pietro, J. Droniou and G. Manzini, Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355 (2018) 397–425. | Zbl | MR | DOI

[39] D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In Vol. 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg (2012). | Zbl | MR | DOI

[40] D.A. Di Pietro and A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris 353 (2015) 31–34. | Zbl | MR

[41] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation. ESAIM: M2AN 51 (2017) 1367–1385. | Zbl | mathdoc-id | MR | DOI

[42] F. Gardini and G. Vacca, Virtual element method for second order elliptic eigenvalue problems. IMA J. Numer. Anal. 38 (2018) 2026–2054. | Zbl | MR | DOI

[43] P. Grisvard, Singularities in boundary value problems and exact controllability of hyperbolic systems. In: Optimization, Optimal Control and Partial Differential Equations (Iaşi, 1992). In Vol. 107 of Internat. Ser. Numer. Math. Birkhäuser, Basel (1992) 77–84. | Zbl | MR | DOI

[44] T. Kato, Perturbation Theory for Linear Operators. 2nd edition. Springer-Verlag, Berlin (1976). | Zbl | MR

[45] K. Lipnikov and G. Manzini, High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272 (2014) 360–385. | Zbl | MR | DOI

[46] L. Mascotto, I. Perugia and A. Pichler, Non-conforming harmonic virtual element method: h -and p -versions. J. Sci. Comput. 77 (2018) 1874–1908. | Zbl | MR | DOI

[47] D. Mora, G. Rivera and R. Rodrguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25 (2015) 1421–1445. | Zbl | MR | DOI

[48] D. Mora, G. Rivera and R. Rodrguez, A posteriori error estimates for a virtual element method for the Steklov eigenvalue problem. Comput. Math. Appl. 74 (2017) 2172–2190. | Zbl | MR | DOI

[49] D. Mora, G. Rivera and I. Velásquez, A virtual element method for the vibration problem of kirchhoff plates. ESAIM: M2AN 52 (2018) 1437–1456. | Zbl | mathdoc-id | MR | DOI

[50] C. Talischi, G.H. Paulino, A. Pereira and I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45 (2012) 309–328. | Zbl | MR | DOI

[51] G. Vacca, Virtual element methods for hyperbolic problems on polygonal meshes. Comput. Math. Appl. 74 (2017) 882–898. | Zbl | MR | DOI

[52] G. Vacca, An H1-conforming virtual element for darcy and brinkman equations. Math. Models Methods Appl. Sci. 28 (2018) 159–194. | Zbl | MR | DOI

[53] P. Wriggers, W. Rust and B. Reddy, A virtual element method for contact. Comput. Mech. 58 (2016) 1039–1050. | Zbl | MR | DOI

Cité par Sources :