Voir la notice de l'article provenant de la source Numdam
Fully-discrete approximations of the Allen–Cahn equation are considered. In particular, we consider schemes of arbitrary order based on a discontinuous Galerkin (in time) approach combined with standard conforming finite elements (in space). We prove that these schemes are unconditionally stable under minimal regularity assumptions on the given data. We also prove best approximation a-priori error estimates, with constants depending polynomially upon (1/ε) by circumventing Gronwall Lemma arguments. The key feature of our approach is a carefully constructed duality argument, combined with a boot-strap technique.
Chrysafinos, Konstantinos 1
@article{M2AN_2019__53_2_551_0, author = {Chrysafinos, Konstantinos}, title = {Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the {Allen{\textendash}Cahn} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {551--583}, publisher = {EDP-Sciences}, volume = {53}, number = {2}, year = {2019}, doi = {10.1051/m2an/2018071}, zbl = {1433.65209}, mrnumber = {3942179}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018071/} }
TY - JOUR AU - Chrysafinos, Konstantinos TI - Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the Allen–Cahn equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2019 SP - 551 EP - 583 VL - 53 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018071/ DO - 10.1051/m2an/2018071 LA - en ID - M2AN_2019__53_2_551_0 ER -
%0 Journal Article %A Chrysafinos, Konstantinos %T Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the Allen–Cahn equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2019 %P 551-583 %V 53 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018071/ %R 10.1051/m2an/2018071 %G en %F M2AN_2019__53_2_551_0
Chrysafinos, Konstantinos. Stability analysis and best approximation error estimates of discontinuous time-stepping schemes for the Allen–Cahn equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 53 (2019) no. 2, pp. 551-583. doi : 10.1051/m2an/2018071. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018071/
[1] Galerkin time-stepping methods for nonlinear parabolic equations. ESAIM: M2AN 38 (2004) 261–289. | Zbl | MR | mathdoc-id | DOI
and ,[2] A microscopic theory for antiphase boundary motion and its applications to antifase domain coarsening. Acta Metall. 27 (1979) 1084–1095. | DOI
and ,[3] The spectrum of the Cahn–Hilliard operator for generic interface in higher space dimensions. Indiana Univ. Math. J. 42 (1993) 637–674. | Zbl | MR | DOI
and ,[4] Adaptive, second-order in time, primitive-variable discontinuous Galerkin schemes for a Cahn–Hilliard equation with a mass source. IMA J. Numer. Anal. 35 (2015) 1167–1198. | Zbl | MR | DOI
and and ,[5] Numerical Methods for Nonlinear Partial Differential Equations. In Vol. 47 of Springer Series in Computational Mathematics. (2015). | Zbl | MR | DOI
,[6] Finite element approximation of an Allen–Cahn/Cahn–Hilliard system. IMA J. Numer. Anal. 22 (2002) 11–71. | Zbl | MR | DOI
and ,[7] An error bound for the finite element approximation of the Cahn–Hilliard equation with logarithmic free energy. Numer. Math. 72 (1995) 1–20. | Zbl | MR | DOI
and ,[8] Quasi-optimal and robust a posteriori error estimates in for the approximation of the Allen–Cahn equations past singularities. Math. Comput. 80 (2011) 761–780. | Zbl | MR | DOI
and ,[9] Robust a priori and a posteriori error analysis for the approximation of the Allen–Cahn and Ginzburg–Landau equations past topological changes. SIAM J. Numer. Anal. 49 (2011) 110–134. | Zbl | MR | DOI
, and ,[10] Spectrum for the Allen–Cahn. Cahn-Hiliard, and phase field equations for generic interfaces. Comm. Partial Differ. Eqs. 19 (1994) 1371–1395. | Zbl | MR | DOI
,[11] Convergence of numerical solutions to Allen–Cahn. Appl. Anal.. 69 (1998) 47–56. | Zbl | MR
, and ,[12] Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366. | Zbl | MR | DOI
and ,[13] Discontinous Galerkin approximations of the Stokes and Navier–Stokes problem. Math. Comput. 79 (2010) 2135–2167. | Zbl | MR | DOI
and ,[14] The finite element method for elliptic problems. SIAM Classics Appl. Math. 40 (2002) 1–511. | Zbl | MR
,[15] Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36 (1981) 455–473. | Zbl | MR | DOI
, and ,[16] Numerical studies of the Cahn–Hilliard equation for phsae seperation. IMA J. Appl. Math. 38 (1987) 97–128. | Zbl | MR | DOI
and ,[17] Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. | Zbl | MR | DOI
and ,[18] Adaptive finite element methods for parabolic problems. . SIAM J. Numer. Anal. 28 (1991) 43–77. | Zbl | MR | DOI
and ,[19] Adaptive finite element methods for parabolic problems. II. Optimal error estimates in L∞(L2) and L∞(L∞). SIAM J. Numer. Anal. 32 (1995) 706–740. | Zbl | MR | DOI
and ,[20] Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. | Zbl | MR | DOI
and ,[21] The discontinuous Galerkin method for semilinear parabolic equations. RAIRO Model. Math. Anal. Numer. 27 (1993) 35–54. | Zbl | MR | mathdoc-id | DOI
and ,[22] MR
, and , In Vol. 146 of Memoirs of the American Mathematical Society. (2000). viii+109. |[23] Partial Differential Equations. AMS, Providence, RI (1998). | Zbl | MR
,[24] Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen–Cahn equation and the mean curvature flow. IMA J. Numer. Anal. 35 (2015) 1622–1651. | Zbl | MR | DOI
and ,[25] Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. | Zbl | MR | DOI
and ,[26] A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput. 24 (2005) 121–146. | Zbl | MR | DOI
and ,[27] On a posteriori error control for the Allen–Cahn problem. Math. Meth. Appl. Sci. 37 (2014) 173–179. | Zbl | MR | DOI
and ,[28] Finite Element Methods for Navier–Stokes. Springer-Verlag, New York, NY (1986). | MR | DOI
and ,[29] Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM. J. Num. Anal. 19 (1982) 275–311. | Zbl | MR | DOI
and ,[30] Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928. | Zbl | MR | DOI
,[31] Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62 (2015) 431–455. | Zbl | MR | DOI
, , and ,[32] A posteriori error control for the Allen–Cahn problem circumventing Gronwall’s inequality. ESAIM: M2AN 38 (2004) 129–142. | Zbl | MR | mathdoc-id | DOI
, and ,[33] On a finite element method for solving the neutron transport equation, edited by . In: Mathematical Aspects of Finite Elements in Partial Differential Equations. Academic Press, New York, NY (1974) 89–123. | Zbl | MR | DOI
and ,[34] Discrete maximal parabolic regularity for Galerkin finite element methods. Numer. Math. 135 (2017) 923–952. | Zbl | MR | DOI
and ,[35] On the smoothing property of the galerkin method for parabolic equations. SIAM J. Numer. Anal. 19 (1982) 93–113. | Zbl | MR | DOI
and ,[36] A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: problems without control constraints. SIAM J. Control. Optim. 47 (2008) 1150–1177. | Zbl | MR | DOI
and ,[37] Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1669–1691. | Zbl | MR | DOI
and ,[38] Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method. IMA J. Numer. Anal. 37 (2016) 1961–1985. | Zbl | MR
,[39] Infinite Difemsional Dynamical Systems in Mechanics and Physics. In Vol. 68 of Applied Mathematical Sciences. Springer-Verlag, Berlin (1997). | Zbl | MR
,[40] Galerkin Finite Element Methods for Parabolic Problems. Spinger-Verlag, Berlin (1997). | Zbl | MR | DOI
,[41] Compactness properties of the DG and CG time stepping schemes for parabolic equations. SIAM J. Numer. Anal. 47 (2010) 4680–4710. | Zbl | MR | DOI
,[42] Uniform Lp-bound of the AllenCahn equation and its numerical discretization. Inter. J. Numer. Anal. Model. 15 (2018) 213–228. | MR | Zbl
, and ,[43] Nonlinear Functional Analysis and its Applications, II/B Nonlinear Monotone Operators. Springer-Verlag, New York, NY (1990). | Zbl | MR
,[44] Numerical studies of discrete approximation to the Allen–Cahn equation in sharp interface limit. SIAM J. Sci. Comput. 31 (2009) 3042–3063. | Zbl | MR | DOI
and ,Cité par Sources :