Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2247-2282

Voir la notice de l'article provenant de la source Numdam

We develop a theoretical framework for the analysis of stabilized cut finite element methods for the Laplace-Beltrami operator on a manifold embedded in d of arbitrary codimension. The method is based on using continuous piecewise linears on a background mesh in the embedding space for approximation together with a stabilizing form that ensures that the resulting problem is stable. The discrete manifold is represented using a triangulation which does not match the background mesh and does not need to be shape-regular, which includes level set descriptions of codimension one manifolds and the non-matching embedding of independently triangulated manifolds as special cases. We identify abstract key assumptions on the stabilizing form which allow us to prove a bound on the condition number of the stiffness matrix and optimal order 𝑎 𝑝𝑟𝑖𝑜𝑟𝑖 estimates. The key assumptions are verified for three different realizations of the stabilizing form including a novel stabilization approach based on penalizing the surface normal gradient on the background mesh. Finally, we present numerical results illustrating our results for a curve and a surface embedded in 3 .

DOI : 10.1051/m2an/2018038
Classification : 65N30, 65N85, 58J05
Keywords: Surface PDE, Laplace-Beltrami operator, cut finite element method, stabilization, condition number, a priori error estimates, arbitrary codimension

Burman, Erik 1 ; Hansbo, Peter 1 ; Larson, Mats G. 1 ; Massing, André 1

1
@article{M2AN_2018__52_6_2247_0,
     author = {Burman, Erik and Hansbo, Peter and Larson, Mats G. and Massing, Andr\'e},
     title = {Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2247--2282},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {6},
     year = {2018},
     doi = {10.1051/m2an/2018038},
     zbl = {1417.65199},
     mrnumber = {3905189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018038/}
}
TY  - JOUR
AU  - Burman, Erik
AU  - Hansbo, Peter
AU  - Larson, Mats G.
AU  - Massing, André
TI  - Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 2247
EP  - 2282
VL  - 52
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018038/
DO  - 10.1051/m2an/2018038
LA  - en
ID  - M2AN_2018__52_6_2247_0
ER  - 
%0 Journal Article
%A Burman, Erik
%A Hansbo, Peter
%A Larson, Mats G.
%A Massing, André
%T Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 2247-2282
%V 52
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018038/
%R 10.1051/m2an/2018038
%G en
%F M2AN_2018__52_6_2247_0
Burman, Erik; Hansbo, Peter; Larson, Mats G.; Massing, André. Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 6, pp. 2247-2282. doi: 10.1051/m2an/2018038

Cité par Sources :