High-frequency behaviour of corner singularities in Helmholtz problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1803-1845

Voir la notice de l'article provenant de la source Numdam

We analyze the singular behaviour of the Helmholtz equation set in a non-convex polygon. Classically, the solution of the problem is split into a regular part and one singular function for each re-entrant corner. The originality of our work is that the “amplitude” of the singular parts is bounded explicitly in terms of frequency. We show that for high frequency problems, the “dominant” part of the solution is the regular part. As an application, we derive sharp error estimates for finite element discretizations. These error estimates show that the “pollution effect” is not changed by the presence of singularities. Furthermore, a consequence of our theory is that locally refined meshes are not needed for high-frequency problems, unless a very accurate solution is required. These results are illustrated with numerical examples that are in accordance with the developed theory.

DOI : 10.1051/m2an/2018031
Classification : 35J05, 35J75, 65N30, 78A45
Keywords: Helmholtz problems, corner singularities, finite elements, pollution effect

Chaumont-Frelet, T. 1 ; Nicaise, S. 1

1
@article{M2AN_2018__52_5_1803_0,
     author = {Chaumont-Frelet, T. and Nicaise, S.},
     title = {High-frequency behaviour of corner singularities in {Helmholtz} problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1803--1845},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {5},
     year = {2018},
     doi = {10.1051/m2an/2018031},
     zbl = {1414.35053},
     mrnumber = {3881571},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018031/}
}
TY  - JOUR
AU  - Chaumont-Frelet, T.
AU  - Nicaise, S.
TI  - High-frequency behaviour of corner singularities in Helmholtz problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 1803
EP  - 1845
VL  - 52
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018031/
DO  - 10.1051/m2an/2018031
LA  - en
ID  - M2AN_2018__52_5_1803_0
ER  - 
%0 Journal Article
%A Chaumont-Frelet, T.
%A Nicaise, S.
%T High-frequency behaviour of corner singularities in Helmholtz problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 1803-1845
%V 52
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018031/
%R 10.1051/m2an/2018031
%G en
%F M2AN_2018__52_5_1803_0
Chaumont-Frelet, T.; Nicaise, S. High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 5, pp. 1803-1845. doi: 10.1051/m2an/2018031

Cité par Sources :