Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 773-801

Voir la notice de l'article provenant de la source Numdam

In this paper, a finite volume element (FVE) method is considered for spatial approximations of time fractional diffusion equations involving a Riemann-Liouville fractional derivative of order α ( 0 , 1 ) in time. Improving upon earlier results [Karaa et al., IMA J. Numer. Anal. 37 (2017) 945–964], error estimates in L 2 ( Ω )  - and   H 1 ( Ω ) -norms for the semidiscrete problem with smooth and mildly smooth initial data, i.e., v H 2 ( Ω ) H 0 1 ( Ω ) and v H 0 1 ( Ω ) are established. For nonsmooth data, that is, v L 2 ( Ω ) , the optimal L 2 ( Ω ) -error estimate is shown to hold only under an additional assumption on the triangulation, which is known to be satisfied for symmetric triangulations. Superconvergence result is also proved and as a consequence, a quasi-optimal error estimate is established in the L ( Ω ) -norm. Further, two fully discrete schemes using convolution quadrature in time generated by the backward Euler and the second-order backward difference methods are analyzed, and error estimates are derived for both smooth and nonsmooth initial data. Based on a comparison of the standard Galerkin finite element solution with the FVE solution and exploiting tools for Laplace transforms with semigroup type properties of the FVE solution operator, our analysis is then extended in a unified manner to several time fractional order evolution problems. Finally, several numerical experiments are conducted to confirm our theoretical findings.

DOI : 10.1051/m2an/2018029
Classification : 65M60, 65M12, 65M15
Keywords: Fractional order evolution equation, subdiffusion, finite volume element method, Laplace transform, backward Euler and second-order backward difference methods, convolution quadrature, optimal error estimate, smooth and nonsmooth data

Karaa, Samir 1 ; Pani, Amiya K. 1

1
@article{M2AN_2018__52_2_773_0,
     author = {Karaa, Samir and Pani, Amiya K.},
     title = {Error analysis of a {FVEM} for fractional order evolution equations with nonsmooth initial data},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {773--801},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2},
     year = {2018},
     doi = {10.1051/m2an/2018029},
     mrnumber = {3834443},
     zbl = {1404.65114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018029/}
}
TY  - JOUR
AU  - Karaa, Samir
AU  - Pani, Amiya K.
TI  - Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2018
SP  - 773
EP  - 801
VL  - 52
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018029/
DO  - 10.1051/m2an/2018029
LA  - en
ID  - M2AN_2018__52_2_773_0
ER  - 
%0 Journal Article
%A Karaa, Samir
%A Pani, Amiya K.
%T Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2018
%P 773-801
%V 52
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2018029/
%R 10.1051/m2an/2018029
%G en
%F M2AN_2018__52_2_773_0
Karaa, Samir; Pani, Amiya K. Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 52 (2018) no. 2, pp. 773-801. doi: 10.1051/m2an/2018029

Cité par Sources :