Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2237-2261

Voir la notice de l'article provenant de la source Numdam

The Monge–Kantorovich problem arises as a special case for linear cost functionals in optimal transportation problems. It leads to a convex minimization problem with limited regularity properties. The convergent finite element discretization and iterative solution of the problem and its dual are addressed. Based on these approximations a computable upper bound for the primal-dual gap is derived which is suitable for efficient local mesh refinement. Numerical experiments reveal a significant improvement of related adaptive methods.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017054
Classification : 65K10, 65N50, 49M25, 90C08
Keywords: Optimal transport, a posteriori error estimation, iterative solution, adaptive mesh refinement

Bartels, Sören 1 ; Schön, Patrick 1

1 Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Str. 10, 79104 Freiburg i.Br., Germany.
@article{M2AN_2017__51_6_2237_0,
     author = {Bartels, S\"oren and Sch\"on, Patrick},
     title = {Adaptive approximation of the {Monge{\textendash}Kantorovich} problem via primal-dual gap estimates},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2237--2261},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {6},
     year = {2017},
     doi = {10.1051/m2an/2017054},
     mrnumber = {3745171},
     zbl = {1396.65100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017054/}
}
TY  - JOUR
AU  - Bartels, Sören
AU  - Schön, Patrick
TI  - Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 2237
EP  - 2261
VL  - 51
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017054/
DO  - 10.1051/m2an/2017054
LA  - en
ID  - M2AN_2017__51_6_2237_0
ER  - 
%0 Journal Article
%A Bartels, Sören
%A Schön, Patrick
%T Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 2237-2261
%V 51
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017054/
%R 10.1051/m2an/2017054
%G en
%F M2AN_2017__51_6_2237_0
Bartels, Sören; Schön, Patrick. Adaptive approximation of the Monge–Kantorovich problem via primal-dual gap estimates. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 6, pp. 2237-2261. doi: 10.1051/m2an/2017054

Cité par Sources :