Convergence analysis of a BDF2 / mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1883-1902

Voir la notice de l'article provenant de la source Numdam

This paper presents an a priori error analysis of a fully discrete scheme for the numerical solution of the transient, nonlinear Darcy–Nernst–Planck–Poisson system. The scheme uses the second order backward difference formula (BDF2) in time and the mixed finite element method with Raviart–Thomas elements in space. In the first step, we show that the solution of the underlying weak continuous problem is also a solution of a third problem for which an existence result is already established. Thereby a stability estimate arises, which provides an L bound of the concentrations / masses of the system. This bound is used as a level for a cut-off operator that enables a proper formulation of the fully discrete scheme. The error analysis works without semi-discrete intermediate formulations and reveals convergence rates of optimal orders in time and space. Numerical simulations validate the theoretical results for lowest order finite element spaces in two dimensions.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2017002
Classification : 65M12, 65M15, 65M60, 65L06, 76Rxx, 76Wxx
Keywords: Stokes / Darcy–Nernst–Planck–Poisson system, mixed finite elements, backward difference formula, error analysis, porous media

Frank, Florian 1 ; Knabner, Peter 2

1 Rice University, CAAM Department, 6100 Main Street, Houston, TX 77005, USA
2 Friedrich–Alexander University of Erlangen–Nürnberg, Department of Mathematics, Cauerstr. 11, 91058 Erlangen, Germany
@article{M2AN_2017__51_5_1883_0,
     author = {Frank, Florian and Knabner, Peter},
     title = {Convergence analysis of a {BDF2\,/\,mixed} finite element discretization of a {Darcy{\textendash}Nernst{\textendash}Planck{\textendash}Poisson} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1883--1902},
     publisher = {EDP-Sciences},
     volume = {51},
     number = {5},
     year = {2017},
     doi = {10.1051/m2an/2017002},
     zbl = {1457.65119},
     mrnumber = {3731553},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017002/}
}
TY  - JOUR
AU  - Frank, Florian
AU  - Knabner, Peter
TI  - Convergence analysis of a BDF2 / mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2017
SP  - 1883
EP  - 1902
VL  - 51
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017002/
DO  - 10.1051/m2an/2017002
LA  - en
ID  - M2AN_2017__51_5_1883_0
ER  - 
%0 Journal Article
%A Frank, Florian
%A Knabner, Peter
%T Convergence analysis of a BDF2 / mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2017
%P 1883-1902
%V 51
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2017002/
%R 10.1051/m2an/2017002
%G en
%F M2AN_2017__51_5_1883_0
Frank, Florian; Knabner, Peter. Convergence analysis of a BDF2 / mixed finite element discretization of a Darcy–Nernst–Planck–Poisson system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1883-1902. doi: 10.1051/m2an/2017002

Cité par Sources :