Voir la notice de l'article provenant de la source Numdam
We devise and analyze an edge-based scheme on polyhedral meshes to approximate a vector advection-reaction problem. The well-posedness of the discrete problem is analyzed first under the classical positivity hypothesis of Friedrichs’ systems that requires a lower bound on the lowest eigenvalue of some tensor depending on the model parameters. We also prove stability when the lowest eigenvalue is null or even slightly negative if the mesh size is small enough. A priori error estimates are established for solutions in with q ∈ ((3/2),2]. Numerical results are presented on three-dimensional polyhedral meshes.
Cantin, Pierre 1, 2 ; Ern, Alexandre 1
@article{M2AN_2017__51_5_1561_0, author = {Cantin, Pierre and Ern, Alexandre}, title = {An edge-based scheme on polyhedral meshes for vector advection-reaction equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1561--1581}, publisher = {EDP-Sciences}, volume = {51}, number = {5}, year = {2017}, doi = {10.1051/m2an/2016075}, mrnumber = {3731541}, zbl = {1402.65151}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016075/} }
TY - JOUR AU - Cantin, Pierre AU - Ern, Alexandre TI - An edge-based scheme on polyhedral meshes for vector advection-reaction equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 1561 EP - 1581 VL - 51 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016075/ DO - 10.1051/m2an/2016075 LA - en ID - M2AN_2017__51_5_1561_0 ER -
%0 Journal Article %A Cantin, Pierre %A Ern, Alexandre %T An edge-based scheme on polyhedral meshes for vector advection-reaction equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 1561-1581 %V 51 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016075/ %R 10.1051/m2an/2016075 %G en %F M2AN_2017__51_5_1561_0
Cantin, Pierre; Ern, Alexandre. An edge-based scheme on polyhedral meshes for vector advection-reaction equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 5, pp. 1561-1581. doi: 10.1051/m2an/2016075
Cité par Sources :