Voir la notice de l'article provenant de la source Numdam
This work is concerned with an adaptive edge element solution of an optimal control problem associated with a magnetostatic saddle-point Maxwell’s system. An a posteriori error estimator of the residue type is derived for the lowest-order edge element approximation of the problem and proved to be both reliable and efficient. With the estimator and a general marking strategy, we propose an adaptive edge element method, which is demonstrated to generate a sequence of discrete solutions converging strongly to the exact solution satisfying the resulting optimality conditions and guarantee a vanishing limit of the error estimator.
Xu, Yifeng 1 ; Zou, Jun 2
@article{M2AN_2017__51_2_615_0, author = {Xu, Yifeng and Zou, Jun}, title = {A {Convergent} adaptive edge element method for an optimal control problem in magnetostatics}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {615--640}, publisher = {EDP-Sciences}, volume = {51}, number = {2}, year = {2017}, doi = {10.1051/m2an/2016030}, mrnumber = {3626413}, zbl = {1366.78022}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016030/} }
TY - JOUR AU - Xu, Yifeng AU - Zou, Jun TI - A Convergent adaptive edge element method for an optimal control problem in magnetostatics JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 615 EP - 640 VL - 51 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016030/ DO - 10.1051/m2an/2016030 LA - en ID - M2AN_2017__51_2_615_0 ER -
%0 Journal Article %A Xu, Yifeng %A Zou, Jun %T A Convergent adaptive edge element method for an optimal control problem in magnetostatics %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 615-640 %V 51 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2016030/ %R 10.1051/m2an/2016030 %G en %F M2AN_2017__51_2_615_0
Xu, Yifeng; Zou, Jun. A Convergent adaptive edge element method for an optimal control problem in magnetostatics. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 2, pp. 615-640. doi: 10.1051/m2an/2016030
Cité par Sources :