Energy stable and convergent finite element schemes for the modified phase field crystal equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1523-1560

Voir la notice de l'article provenant de la source Numdam

We propose a space semi-discrete and a fully discrete finite element scheme for the modified phase field crystal equation (MPFC). The space discretization is based on a splitting method and on a Galerkin approximation in H 1 for the phase function. This formulation includes the classical continuous finite elements. The time discretization is a second-order scheme which has been introduced by Gomez and Hughes for the Cahn–Hilliard equation. The fully discrete scheme is shown to be unconditionally energy stable and uniquely solvable for small time steps, with a smallness condition independent of the space step. Using energy estimates, we prove that in both cases, the discrete solution converges to the unique energy solution of the MPFC equation as the discretization parameters tend to 0. This is the first proof of convergence for the scheme of Gomez and Hughes, which has been shown to be unconditionally energy stable for several Cahn–Hilliard related equations. Using a Łojasiewicz inequality, we also establish that the discrete solution tends to a stationary solution as time goes to infinity. Numerical simulations with continuous piecewise linear (P 1 ) finite elements illustrate the theoretical results.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015092
Classification : 65M60, 65P40, 74N05, 82C26
Keywords: Finite elements, second-order schemes, gradient-like systems, Łojasiewicz inequality

Grasselli, Maurizio 1 ; Pierre, Morgan 2

1 Dipartimento di Matematica, Politecnico di Milano, Via E. Bonardi 9, 20133 Milano, Italy.
2 Laboratoire de Mathématiques et Applications UMR CNRS 7348, Université de Poitiers, Téléport 2 - BP 30179, boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil, France.
@article{M2AN_2016__50_5_1523_0,
     author = {Grasselli, Maurizio and Pierre, Morgan},
     title = {Energy stable and convergent finite element schemes for the modified phase field crystal equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1523--1560},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015092},
     mrnumber = {3554551},
     zbl = {1358.82025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015092/}
}
TY  - JOUR
AU  - Grasselli, Maurizio
AU  - Pierre, Morgan
TI  - Energy stable and convergent finite element schemes for the modified phase field crystal equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1523
EP  - 1560
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015092/
DO  - 10.1051/m2an/2015092
LA  - en
ID  - M2AN_2016__50_5_1523_0
ER  - 
%0 Journal Article
%A Grasselli, Maurizio
%A Pierre, Morgan
%T Energy stable and convergent finite element schemes for the modified phase field crystal equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1523-1560
%V 50
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015092/
%R 10.1051/m2an/2015092
%G en
%F M2AN_2016__50_5_1523_0
Grasselli, Maurizio; Pierre, Morgan. Energy stable and convergent finite element schemes for the modified phase field crystal equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1523-1560. doi: 10.1051/m2an/2015092

Cité par Sources :