Voir la notice de l'article provenant de la source Numdam
This article is concerned with the numerical simulations of perfect crystals. We study the rate of convergence of the reduced Hartree−Fock (rHF) model in a supercell towards the periodic rHF model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.
Gontier, David 1 ; Lahbabi, Salma 2
@article{M2AN_2016__50_5_1403_0, author = {Gontier, David and Lahbabi, Salma}, title = {Convergence rates of supercell calculations in the reduced {Hartree\ensuremath{-}Fock} model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1403--1424}, publisher = {EDP-Sciences}, volume = {50}, number = {5}, year = {2016}, doi = {10.1051/m2an/2015084}, zbl = {1356.35195}, mrnumber = {3554547}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/} }
TY - JOUR AU - Gontier, David AU - Lahbabi, Salma TI - Convergence rates of supercell calculations in the reduced Hartree−Fock model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1403 EP - 1424 VL - 50 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/ DO - 10.1051/m2an/2015084 LA - en ID - M2AN_2016__50_5_1403_0 ER -
%0 Journal Article %A Gontier, David %A Lahbabi, Salma %T Convergence rates of supercell calculations in the reduced Hartree−Fock model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1403-1424 %V 50 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/ %R 10.1051/m2an/2015084 %G en %F M2AN_2016__50_5_1403_0
Gontier, David; Lahbabi, Salma. Convergence rates of supercell calculations in the reduced Hartree−Fock model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1403-1424. doi : 10.1051/m2an/2015084. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/
A definition of the ground state energy for systems composed of infinitely many particles. Commun. Partial Differ. Eq. 28 (2003) 439–475. | Zbl | MR | DOI
, and ,Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98 (2007) 046402. | DOI
, , , and ,E. Cancès, SCF algorithms for Hartree−Fock electronic calculations. In Mathematical Models and Methods for Ab Initio Quantum Chemistry, edited by M. Defranceschi and C. Le Bris. Springer (2000). | Zbl | MR
A new approach to the modeling of local defects in crystals: the reduced Hartree−Fock case. Commun. Math. Phys. 281 (2008) 129–177. | Zbl | MR | DOI
, and ,On the thermodynamic limit for Hartree−Fock type models. Ann. Inst. Henri Poincaré (C) 18 (2001) 687–760. | Zbl | MR | mathdoc-id
, and ,Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and Zinc-blende structures. Phys. Rev. 141 (1966) 789–796. | DOI
and ,Analytical properties of -dimensional energy bands and Wannier functions. Phys. Rev. 135 (1964) A698–A707. | MR | DOI
,Energy bands and projection operators in a crystal: Analytic and asymptotic properties. Phys. Rev. 135 (1964) A685–A697. | MR | DOI
,T. Kato, Perturbation Theory for Linear Operators. Springer Science & Business Media (2012). | Zbl
Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115 (1959) 809–821. | Zbl | MR | DOI
,The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23 (1977) 22–116. | Zbl | MR | DOI
and ,Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976) 5188–5192. | MR | DOI
and ,Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8 (2007) 995–1011. | Zbl | MR | DOI
,M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press (1978). | MR
B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs. American Mathematical Society (2005). | Zbl | MR
Cité par Sources :