Convergence rates of supercell calculations in the reduced Hartree−Fock model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1403-1424.

Voir la notice de l'article provenant de la source Numdam

This article is concerned with the numerical simulations of perfect crystals. We study the rate of convergence of the reduced Hartree−Fock (rHF) model in a supercell towards the periodic rHF model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015084
Classification : 35Q40, 65M12
Keywords: Reduced Hartree−Fock, supercell model, Riemann sums, analytic functions

Gontier, David 1 ; Lahbabi, Salma 2

1 UniversitéParis-Est, École des Ponts and INRIA, 77455 Marne-la-Vallée, France.
2 Université Hassan II Casablanca, ENSEM, Km 7 Route d’El Jadida, B.P. 8118 Oasis, Casablanca, Morocco.
@article{M2AN_2016__50_5_1403_0,
     author = {Gontier, David and Lahbabi, Salma},
     title = {Convergence rates of supercell calculations in the reduced {Hartree\ensuremath{-}Fock} model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1403--1424},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015084},
     zbl = {1356.35195},
     mrnumber = {3554547},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/}
}
TY  - JOUR
AU  - Gontier, David
AU  - Lahbabi, Salma
TI  - Convergence rates of supercell calculations in the reduced Hartree−Fock model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1403
EP  - 1424
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/
DO  - 10.1051/m2an/2015084
LA  - en
ID  - M2AN_2016__50_5_1403_0
ER  - 
%0 Journal Article
%A Gontier, David
%A Lahbabi, Salma
%T Convergence rates of supercell calculations in the reduced Hartree−Fock model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1403-1424
%V 50
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/
%R 10.1051/m2an/2015084
%G en
%F M2AN_2016__50_5_1403_0
Gontier, David; Lahbabi, Salma. Convergence rates of supercell calculations in the reduced Hartree−Fock model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1403-1424. doi : 10.1051/m2an/2015084. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/

X. Blanc, C. Le Bris and P.-L. Lions, A definition of the ground state energy for systems composed of infinitely many particles. Commun. Partial Differ. Eq. 28 (2003) 439–475. | Zbl | MR | DOI

C. Brouder, C. Panati, M. Calandra, C. Mourougane and N. Marzari, Exponential localization of Wannier functions in insulators. Phys. Rev. Lett. 98 (2007) 046402. | DOI

E. Cancès, SCF algorithms for Hartree−Fock electronic calculations. In Mathematical Models and Methods for Ab Initio Quantum Chemistry, edited by M. Defranceschi and C. Le Bris. Springer (2000). | Zbl | MR

E. Cancès, A. Deleurence and M. Lewin, A new approach to the modeling of local defects in crystals: the reduced Hartree−Fock case. Commun. Math. Phys. 281 (2008) 129–177. | Zbl | MR | DOI

I. Catto, C. Le Bris and P.-L. Lions, On the thermodynamic limit for Hartree−Fock type models. Ann. Inst. Henri Poincaré (C) 18 (2001) 687–760. | Zbl | MR | mathdoc-id

M.L. Cohen and T.K. Bergstresser, Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and Zinc-blende structures. Phys. Rev. 141 (1966) 789–796. | DOI

J. Des Cloizeaux, Analytical properties of n-dimensional energy bands and Wannier functions. Phys. Rev. 135 (1964) A698–A707. | MR | DOI

J. Des Cloizeaux, Energy bands and projection operators in a crystal: Analytic and asymptotic properties. Phys. Rev. 135 (1964) A685–A697. | MR | DOI

T. Kato, Perturbation Theory for Linear Operators. Springer Science & Business Media (2012). | Zbl

W. Kohn, Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 115 (1959) 809–821. | Zbl | MR | DOI

E.H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids. Adv. Math. 23 (1977) 22–116. | Zbl | MR | DOI

H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976) 5188–5192. | MR | DOI

G. Panati, Triviality of Bloch and Bloch–Dirac bundles. Ann. Henri Poincaré 8 (2007) 995–1011. | Zbl | MR | DOI

M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press (1978). | MR

B. Simon, Trace Ideals and Their Applications. Mathematical Surveys and Monographs. American Mathematical Society (2005). | Zbl | MR

Cité par Sources :