Voir la notice de l'article provenant de la source Numdam
This article is concerned with the numerical simulations of perfect crystals. We study the rate of convergence of the reduced Hartree−Fock (rHF) model in a supercell towards the periodic rHF model in the whole space. We prove that, whenever the crystal is an insulator or a semi-conductor, the supercell energy per unit cell converges exponentially fast towards the periodic rHF energy per unit cell, with respect to the size of the supercell.
Gontier, David 1 ; Lahbabi, Salma 2
@article{M2AN_2016__50_5_1403_0, author = {Gontier, David and Lahbabi, Salma}, title = {Convergence rates of supercell calculations in the reduced {Hartree\ensuremath{-}Fock} model}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1403--1424}, publisher = {EDP-Sciences}, volume = {50}, number = {5}, year = {2016}, doi = {10.1051/m2an/2015084}, zbl = {1356.35195}, mrnumber = {3554547}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/} }
TY - JOUR AU - Gontier, David AU - Lahbabi, Salma TI - Convergence rates of supercell calculations in the reduced Hartree−Fock model JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2016 SP - 1403 EP - 1424 VL - 50 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/ DO - 10.1051/m2an/2015084 LA - en ID - M2AN_2016__50_5_1403_0 ER -
%0 Journal Article %A Gontier, David %A Lahbabi, Salma %T Convergence rates of supercell calculations in the reduced Hartree−Fock model %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2016 %P 1403-1424 %V 50 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015084/ %R 10.1051/m2an/2015084 %G en %F M2AN_2016__50_5_1403_0
Gontier, David; Lahbabi, Salma. Convergence rates of supercell calculations in the reduced Hartree−Fock model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 5, pp. 1403-1424. doi: 10.1051/m2an/2015084
Cité par Sources :