Distributed shape derivative via averaged adjoint method and applications
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1241-1267

Voir la notice de l'article provenant de la source Numdam

The structure theorem of Hadamard–Zolésio states that the derivative of a shape functional is a distribution on the boundary of the domain depending only on the normal perturbations of a smooth enough boundary. Actually the domain representation, also known as distributed shape derivative, is more general than the boundary expression as it is well-defined for shapes having a lower regularity. It is customary in the shape optimization literature to assume regularity of the domains and use the boundary expression of the shape derivative for numerical algorithms. In this paper we describe several advantages of the distributed shape derivative in terms of generality, easiness of computation and numerical implementation. We identify a tensor representation of the distributed shape derivative, study its properties and show how it allows to recover the boundary expression directly. We use a novel Lagrangian approach, which is applicable to a large class of shape optimization problems, to compute the distributed shape derivative. We also apply the technique to retrieve the distributed shape derivative for electrical impedance tomography. Finally we explain how to adapt the level set method to the distributed shape derivative framework and present numerical results.

Reçu le :
Accepté le :
DOI : 10.1051/m2an/2015075
Classification : 49Q10, 35Q93, 35R30, 35R05
Keywords: Shape optimization, distributed shape derivative, electrical impedance tomography, Lagrangian method, level set method

Laurain, Antoine 1 ; Sturm, Kevin 2

1 Technische Universität Berlin, Institut für Mathematik, Str. des 17. Juni 136, 10623 Berlin, Germany.
2 Universität Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Straße 9, 45127 Essen, Germany.
@article{M2AN_2016__50_4_1241_0,
     author = {Laurain, Antoine and Sturm, Kevin},
     title = {Distributed shape derivative via averaged adjoint method and applications},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1241--1267},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {4},
     year = {2016},
     doi = {10.1051/m2an/2015075},
     mrnumber = {3535238},
     zbl = {1347.49070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015075/}
}
TY  - JOUR
AU  - Laurain, Antoine
AU  - Sturm, Kevin
TI  - Distributed shape derivative via averaged adjoint method and applications
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1241
EP  - 1267
VL  - 50
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015075/
DO  - 10.1051/m2an/2015075
LA  - en
ID  - M2AN_2016__50_4_1241_0
ER  - 
%0 Journal Article
%A Laurain, Antoine
%A Sturm, Kevin
%T Distributed shape derivative via averaged adjoint method and applications
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1241-1267
%V 50
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015075/
%R 10.1051/m2an/2015075
%G en
%F M2AN_2016__50_4_1241_0
Laurain, Antoine; Sturm, Kevin. Distributed shape derivative via averaged adjoint method and applications. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 50 (2016) no. 4, pp. 1241-1267. doi: 10.1051/m2an/2015075

Cité par Sources :