A Numerical Algorithm for L 2 Semi-Discrete Optimal Transport in 3D
ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1693-1715

Voir la notice de l'article provenant de la source Numdam

This paper introduces a numerical algorithm to compute the L 2 optimal transport map between two measures μ and ν, where μ derives from a density ρ defined as a piecewise linear function (supported by a tetrahedral mesh), and where ν is a sum of Dirac masses. I first give an elementary presentation of some known results on optimal transport and then observe a relation with another problem (optimal sampling). This relation gives simple arguments to study the objective functions that characterize both problems. I then propose a practical algorithm to compute the optimal transport map between a piecewise linear density and a sum of Dirac masses in 3D. In this semi-discrete setting [Aurenhammer et al., Proc. of 8th Symposium on Computational Geometry (1992) 350–357] showed that the optimal transport map is determined by the weights of a power diagram. The optimal weights are computed by minimizing a convex objective function with a quasi-Newton method. To evaluate the value and gradient of this objective function, I propose an efficient and robust algorithm, that computes at each iteration the intersection between a power diagram and the tetrahedral mesh that defines the measure μ. The numerical algorithm is experimented and evaluated on several datasets, with up to hundred thousands tetrahedra and one million Dirac masses.

Reçu le :
DOI : 10.1051/m2an/2015055
Classification : 49M15, 35J96, 65D18
Keywords: Optimal transport, power diagrams, quantization noise power, Lloyd relaxation

Lévy, Bruno 1

1 Inria Nancy Grand-Est and LORIA, rue du Jardin Botanique, 54500 Vandoeuvre, France.
@article{M2AN_2015__49_6_1693_0,
     author = {L\'evy, Bruno},
     title = {A {Numerical} {Algorithm} for $L_{2}$ {Semi-Discrete} {Optimal} {Transport} in {3D}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1693--1715},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {6},
     year = {2015},
     doi = {10.1051/m2an/2015055},
     zbl = {1331.49037},
     mrnumber = {3423272},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015055/}
}
TY  - JOUR
AU  - Lévy, Bruno
TI  - A Numerical Algorithm for $L_{2}$ Semi-Discrete Optimal Transport in 3D
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1693
EP  - 1715
VL  - 49
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015055/
DO  - 10.1051/m2an/2015055
LA  - en
ID  - M2AN_2015__49_6_1693_0
ER  - 
%0 Journal Article
%A Lévy, Bruno
%T A Numerical Algorithm for $L_{2}$ Semi-Discrete Optimal Transport in 3D
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1693-1715
%V 49
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015055/
%R 10.1051/m2an/2015055
%G en
%F M2AN_2015__49_6_1693_0
Lévy, Bruno. A Numerical Algorithm for $L_{2}$ Semi-Discrete Optimal Transport in 3D. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1693-1715. doi: 10.1051/m2an/2015055

Cité par Sources :