Finite element decomposition and minimal extension for flow equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1489-1509

Voir la notice de l'article provenant de la source Numdam

In the simulation of flows, the correct treatment of the pressure variable is the key to stable time-integration schemes. This paper contributes a new approach based on the theory of differential-algebraic equations. Motivated by the index reduction technique of minimal extension, a remodelling of the flow equations is proposed. It is shown how this reformulation can be realized for standard finite elements via a decomposition of the discrete spaces and that it ensures stable and accurate approximations. The presented decomposition preserves sparsity and does not call on variable transformations which might change the meaning of the variables. Since the method is eventually an index reduction, high index effects leading to instabilities are eliminated.

Reçu le :
DOI : 10.1051/m2an/2015029
Classification : 76M10, 65L80, 65J10
Keywords: Navier−Stokes equations, time integration schemes, finite element method, index reduction, operator DAE

Altmann, R. 1 ; Heiland, J. 2

1 Institut für Mathematik MA4-5, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.
2 Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
@article{M2AN_2015__49_5_1489_0,
     author = {Altmann, R. and Heiland, J.},
     title = {Finite element decomposition and minimal extension for flow equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1489--1509},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {5},
     year = {2015},
     doi = {10.1051/m2an/2015029},
     zbl = {1327.76090},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015029/}
}
TY  - JOUR
AU  - Altmann, R.
AU  - Heiland, J.
TI  - Finite element decomposition and minimal extension for flow equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 1489
EP  - 1509
VL  - 49
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015029/
DO  - 10.1051/m2an/2015029
LA  - en
ID  - M2AN_2015__49_5_1489_0
ER  - 
%0 Journal Article
%A Altmann, R.
%A Heiland, J.
%T Finite element decomposition and minimal extension for flow equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 1489-1509
%V 49
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015029/
%R 10.1051/m2an/2015029
%G en
%F M2AN_2015__49_5_1489_0
Altmann, R.; Heiland, J. Finite element decomposition and minimal extension for flow equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 5, pp. 1489-1509. doi: 10.1051/m2an/2015029

Cité par Sources :