Voir la notice de l'article provenant de la source Numdam
Over the past five years, multi-marginal optimal transport, a generalization of the well known optimal transport problem of Monge and Kantorovich, has begun to attract considerable attention, due in part to a wide variety of emerging applications. Here, we survey this problem, addressing fundamental theoretical questions including the uniqueness and structure of solutions. The answers to these questions uncover a surprising divergence from the classical two marginal setting, and reflect a delicate dependence on the cost function, which we then illustrate with a series of examples. We go on to describe some applications of the multi-marginal optimal transport problem, focusing primarily on matching in economics and density functional theory in physics.
Pass, Brendan 1
@article{M2AN_2015__49_6_1771_0, author = {Pass, Brendan}, title = {Multi-marginal optimal transport: {Theory} and applications}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1771--1790}, publisher = {EDP-Sciences}, volume = {49}, number = {6}, year = {2015}, doi = {10.1051/m2an/2015020}, mrnumber = {3423275}, zbl = {1330.49050}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015020/} }
TY - JOUR AU - Pass, Brendan TI - Multi-marginal optimal transport: Theory and applications JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1771 EP - 1790 VL - 49 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015020/ DO - 10.1051/m2an/2015020 LA - en ID - M2AN_2015__49_6_1771_0 ER -
%0 Journal Article %A Pass, Brendan %T Multi-marginal optimal transport: Theory and applications %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1771-1790 %V 49 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015020/ %R 10.1051/m2an/2015020 %G en %F M2AN_2015__49_6_1771_0
Pass, Brendan. Multi-marginal optimal transport: Theory and applications. ESAIM: Mathematical Modelling and Numerical Analysis , Optimal Transport, Tome 49 (2015) no. 6, pp. 1771-1790. doi: 10.1051/m2an/2015020
Cité par Sources :