Voir la notice de l'article provenant de la source Numdam
For the nonconforming Crouzeix–Raviart boundary elements from [N. Heuer and F.-J. Sayas, Numer. Math. 112 (2009) 381–401], we develop and analyze a posteriori error estimators based on the methodology. We discuss the optimal rate of convergence for uniform mesh refinement, and present a numerical experiment with singular data where our adaptive algorithm recovers the optimal rate while uniform mesh refinement is sub-optimal. We also discuss the case of reduced regularity by standard geometric singularities to conjecture that, in this situation, non-uniformly refined meshes are not superior to quasi-uniform meshes for Crouzeix–Raviart boundary elements.
Heuer, Norbert 1 ; Karkulik, Michael 1
@article{M2AN_2015__49_4_1193_0, author = {Heuer, Norbert and Karkulik, Michael}, title = {Adaptive {Crouzeix{\textendash}Raviart} boundary element method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1193--1217}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2015003}, mrnumber = {3371908}, zbl = {1326.65166}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/} }
TY - JOUR AU - Heuer, Norbert AU - Karkulik, Michael TI - Adaptive Crouzeix–Raviart boundary element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1193 EP - 1217 VL - 49 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/ DO - 10.1051/m2an/2015003 LA - en ID - M2AN_2015__49_4_1193_0 ER -
%0 Journal Article %A Heuer, Norbert %A Karkulik, Michael %T Adaptive Crouzeix–Raviart boundary element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1193-1217 %V 49 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/ %R 10.1051/m2an/2015003 %G en %F M2AN_2015__49_4_1193_0
Heuer, Norbert; Karkulik, Michael. Adaptive Crouzeix–Raviart boundary element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1193-1217. doi : 10.1051/m2an/2015003. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/
M. Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis. Pure Appl. Math. Wiley-Interscience [John Wiley & Sons], New York (2000). | Zbl | MR
Efficiency and Optimality of Some Weighted–Residual Error Estimator for Adaptive 2D Boundary Element Methods. Comput. Methods Appl. Math. 13 (2013) 305–332. | Zbl | MR | DOI
, , , and ,M. Aurada, M. Feischl, T. Führer, M. Karkulik and D. Praetorius, Energy norm based error estimators for adaptive BEM for hypersingular integral equations. Appl. Numer. Math. (2014). | MR
R.E. Bank, Hierarchical bases and the finite element method. In vol. 5 of Acta Numer. Cambridge Univ. Press, Cambridge (1996) 1–43. | Zbl | MR
A. Berger, R. Scott and G. Strang, Approximate boundary conditions in the finite element method. In vol. X, Symposia Mathematica (Convegno di Analisi Numerica, INDAM, Rome, 1972). Academic Press, London (1972) 295–313. | Zbl | MR
The -version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: M2AN 42 (2008) 821–849. | Zbl | mathdoc-id | MR | DOI
and ,Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. | Zbl | MR | DOI
, and ,Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48 (2010) 734–771. | Zbl | MR | DOI
and ,On traces for in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. | Zbl | MR | DOI
, and ,Averaging techniques for the a posteriori BEM error control for a hypersingular integral equation in two dimensions. SIAM J. Sci. Comput. 29 (2007) 782–810. | MR | Zbl | DOI
and ,Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math. 97 (2004) 397–425. | MR | Zbl | DOI
, , and ,Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. | MR | Zbl | mathdoc-id
,A posteriori error analysis for a boundary element method with non-conforming domain decomposition. Numer. Methods Partial Differ. Eq. 30 (2014) 947–963. | MR | Zbl | DOI
and ,A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. | MR | Zbl | DOI
,Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. | MR | Zbl | DOI
and ,Energy norm based a posteriori error estimation for boundary element methods in two dimensions. Appl. Numer. Math. 59 (2009) 2713–2734. | MR | Zbl | DOI
, , and ,An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297–325. | MR | Zbl | DOI
and ,Simple a posteriori error estimators for the -version of the boundary element method. Computing 83 (2008) 135–162. | MR | Zbl | DOI
and ,Convergence of simple adaptive Galerkin schemes based on error estimators. Numer. Math. 116 (2010) 291–316. | MR | Zbl | DOI
, and ,The boundary element method with Lagrangian multipliers. Numer. Methods Partial Differ. Eq. 25 (2009) 1303–1319. | MR | Zbl | DOI
, and ,Finite elements on degenerate meshes: inverse-type inequalities and applications. IMA J. Numer. Anal. 25 (2005) 379–407. | MR | Zbl | DOI
, and ,E. Hairer, S.P. Nørsett and G. Wanner, Solving ordinary differential equations. I, Nonstiff problems. In vol. 8 of Springer Ser. Comput. Math. Springer-Verlag, Berlin (1987). | MR | Zbl
On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417 (2014) 505–518. | MR | Zbl | DOI
,Crouzeix–Raviart boundary elements. Numer. Math. 112 (2009) 381–401. | MR | Zbl | DOI
and ,On 2D Newest Vertex Bisection: Optimality of Mesh–Closure and -Stability of -Projection. Constr. Approx. 38 (2013) 213–234. | MR | Zbl | DOI
, and ,W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). | MR | Zbl
Integral equations with nonintegrable kernels. Int. Eq. Oper. Theory 5 (1982) 562–572. | MR | Zbl | DOI
,Boundary integral equations for screen problems in . Int. Eq. Oper. Theory 10 (1987) 257–263. | MR | Zbl
,Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. | MR | Zbl | DOI
and ,Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. | MR | Zbl | DOI
,H. Triebel, Interpolation theory, function spaces, differential operators, 2nd edn. Edited by Johann Ambrosius Barth, Heidelberg (1995). | MR | Zbl
R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. B.G. Teubner, Stuttgart (1996). | Zbl
Cité par Sources :