Voir la notice de l'article provenant de la source Numdam
For the nonconforming Crouzeix–Raviart boundary elements from [N. Heuer and F.-J. Sayas, Numer. Math. 112 (2009) 381–401], we develop and analyze a posteriori error estimators based on the methodology. We discuss the optimal rate of convergence for uniform mesh refinement, and present a numerical experiment with singular data where our adaptive algorithm recovers the optimal rate while uniform mesh refinement is sub-optimal. We also discuss the case of reduced regularity by standard geometric singularities to conjecture that, in this situation, non-uniformly refined meshes are not superior to quasi-uniform meshes for Crouzeix–Raviart boundary elements.
Heuer, Norbert 1 ; Karkulik, Michael 1
@article{M2AN_2015__49_4_1193_0, author = {Heuer, Norbert and Karkulik, Michael}, title = {Adaptive {Crouzeix{\textendash}Raviart} boundary element method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1193--1217}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/m2an/2015003}, mrnumber = {3371908}, zbl = {1326.65166}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/} }
TY - JOUR AU - Heuer, Norbert AU - Karkulik, Michael TI - Adaptive Crouzeix–Raviart boundary element method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2015 SP - 1193 EP - 1217 VL - 49 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/ DO - 10.1051/m2an/2015003 LA - en ID - M2AN_2015__49_4_1193_0 ER -
%0 Journal Article %A Heuer, Norbert %A Karkulik, Michael %T Adaptive Crouzeix–Raviart boundary element method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2015 %P 1193-1217 %V 49 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2015003/ %R 10.1051/m2an/2015003 %G en %F M2AN_2015__49_4_1193_0
Heuer, Norbert; Karkulik, Michael. Adaptive Crouzeix–Raviart boundary element method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 4, pp. 1193-1217. doi: 10.1051/m2an/2015003
Cité par Sources :