Comments on iterative schemes for high order compact discretizations to the exterior Helmholtz equation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 221-223

Voir la notice de l'article provenant de la source Numdam

We consider various formulations of higher order absorbing boundary conditions for the Helmholtz equation.

Reçu le :
DOI : 10.1051/m2an/2014031
Classification : 65N06
Keywords: Helmholtz equation, absorbing boundary conditions

Turkel, Eli 1

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
@article{M2AN_2015__49_1_221_0,
     author = {Turkel, Eli},
     title = {Comments on iterative schemes for high order compact discretizations to the exterior {Helmholtz} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {221--223},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014031},
     zbl = {1311.65134},
     mrnumber = {3342198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014031/}
}
TY  - JOUR
AU  - Turkel, Eli
TI  - Comments on iterative schemes for high order compact discretizations to the exterior Helmholtz equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 221
EP  - 223
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014031/
DO  - 10.1051/m2an/2014031
LA  - en
ID  - M2AN_2015__49_1_221_0
ER  - 
%0 Journal Article
%A Turkel, Eli
%T Comments on iterative schemes for high order compact discretizations to the exterior Helmholtz equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 221-223
%V 49
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014031/
%R 10.1051/m2an/2014031
%G en
%F M2AN_2015__49_1_221_0
Turkel, Eli. Comments on iterative schemes for high order compact discretizations to the exterior Helmholtz equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 221-223. doi: 10.1051/m2an/2014031

Cité par Sources :