Error estimates of Runge–Kutta discontinuous galerkin methods for the Vlasov–Maxwell system
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 69-99

Voir la notice de l'article provenant de la source Numdam

In this paper, error analysis is established for Runge–Kutta discontinuous Galerkin (RKDG) methods to solve the Vlasov–Maxwell system. This nonlinear hyperbolic system describes the time evolution of collisionless plasma particles of a single species under the self-consistent electromagnetic field, and it models many phenomena in both laboratory and astrophysical plasmas. The methods involve a third order TVD Runge–Kutta discretization in time and upwind discontinuous Galerkin discretizations of arbitrary order in phase domain. With the assumption that the exact solutions have sufficient regularity, the L 2 errors of the particle number density function as well as electric and magnetic fields at any given time T are bounded by Ch k+1/2 +Cτ 3 under a CFL condition τ/hγ. Here k is the polynomial degree used in phase space discretization, satisfying k>d x +1 2 (with d x being the dimension of spatial domain), τ is the time step, and h is the maximum mesh size in phase space. Both C and γ are positive constants independent of h and τ, and they may depend on the polynomial degree k, time T, the size of the phase domain, certain mesh parameters, and some Sobolev norms of the exact solution. The analysis can be extended to RKDG methods with other numerical fluxes and to RKDG methods solving relativistic Vlasov–Maxwell equations.

Reçu le :
DOI : 10.1051/m2an/2014025
Classification : 65M15, 65M60, 65M06, 35Q83, 35L50
Keywords: Vlasov–Maxwell system, Runge–Kutta discontinuous Galerkin methods, error estimates

Yang, He 1 ; Li, Fengyan 1

1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, 12180-3590 New York, USA.
@article{M2AN_2015__49_1_69_0,
     author = {Yang, He and Li, Fengyan},
     title = {Error estimates of {Runge{\textendash}Kutta} discontinuous galerkin methods for the {Vlasov{\textendash}Maxwell} system},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {69--99},
     publisher = {EDP-Sciences},
     volume = {49},
     number = {1},
     year = {2015},
     doi = {10.1051/m2an/2014025},
     mrnumber = {3342193},
     zbl = {1315.78012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014025/}
}
TY  - JOUR
AU  - Yang, He
AU  - Li, Fengyan
TI  - Error estimates of Runge–Kutta discontinuous galerkin methods for the Vlasov–Maxwell system
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2015
SP  - 69
EP  - 99
VL  - 49
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014025/
DO  - 10.1051/m2an/2014025
LA  - en
ID  - M2AN_2015__49_1_69_0
ER  - 
%0 Journal Article
%A Yang, He
%A Li, Fengyan
%T Error estimates of Runge–Kutta discontinuous galerkin methods for the Vlasov–Maxwell system
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2015
%P 69-99
%V 49
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014025/
%R 10.1051/m2an/2014025
%G en
%F M2AN_2015__49_1_69_0
Yang, He; Li, Fengyan. Error estimates of Runge–Kutta discontinuous galerkin methods for the Vlasov–Maxwell system. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 49 (2015) no. 1, pp. 69-99. doi: 10.1051/m2an/2014025

Cité par Sources :