Voir la notice de l'article provenant de la source Numdam
This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu, F. Murat, Collège de France Seminar, vol. II. Paris 1979-1980; vol. 60 of Res. Notes Math. Pitman, Boston, London (1982) 98-138].
@article{M2AN_2014__48_6_1583_0, author = {Desvillettes, Laurent and Golse, Fran\c{c}ois and Ricci, Valeria}, title = {Derivation of a homogenized two-temperature model from the heat equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1583--1613}, publisher = {EDP-Sciences}, volume = {48}, number = {6}, year = {2014}, doi = {10.1051/m2an/2014011}, mrnumber = {3264366}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014011/} }
TY - JOUR AU - Desvillettes, Laurent AU - Golse, François AU - Ricci, Valeria TI - Derivation of a homogenized two-temperature model from the heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1583 EP - 1613 VL - 48 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014011/ DO - 10.1051/m2an/2014011 LA - en ID - M2AN_2014__48_6_1583_0 ER -
%0 Journal Article %A Desvillettes, Laurent %A Golse, François %A Ricci, Valeria %T Derivation of a homogenized two-temperature model from the heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1583-1613 %V 48 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2014011/ %R 10.1051/m2an/2014011 %G en %F M2AN_2014__48_6_1583_0
Desvillettes, Laurent; Golse, François; Ricci, Valeria. Derivation of a homogenized two-temperature model from the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 6, pp. 1583-1613. doi: 10.1051/m2an/2014011
Cité par Sources :