Voir la notice de l'article provenant de la source Numdam
We present in this paper the formal passage from a kinetic model to the incompressible Navier-Stokes equations for a mixture of monoatomic gases with different masses. The starting point of this derivation is the collection of coupled Boltzmann equations for the mixture of gases. The diffusion coefficients for the concentrations of the species, as well as the ones appearing in the equations for velocity and temperature, are explicitly computed under the Maxwell molecule assumption in terms of the cross sections appearing at the kinetic level.
@article{M2AN_2014__48_4_1171_0, author = {Bisi, Marzia and Desvillettes, Laurent}, title = {Formal passage from kinetic theory to incompressible {Navier-Stokes} equations for a mixture of gases}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1171--1197}, publisher = {EDP-Sciences}, volume = {48}, number = {4}, year = {2014}, doi = {10.1051/m2an/2013135}, mrnumber = {3264350}, zbl = {1301.82046}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013135/} }
TY - JOUR AU - Bisi, Marzia AU - Desvillettes, Laurent TI - Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2014 SP - 1171 EP - 1197 VL - 48 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013135/ DO - 10.1051/m2an/2013135 LA - en ID - M2AN_2014__48_4_1171_0 ER -
%0 Journal Article %A Bisi, Marzia %A Desvillettes, Laurent %T Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2014 %P 1171-1197 %V 48 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013135/ %R 10.1051/m2an/2013135 %G en %F M2AN_2014__48_4_1171_0
Bisi, Marzia; Desvillettes, Laurent. Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 48 (2014) no. 4, pp. 1171-1197. doi: 10.1051/m2an/2013135
Cité par Sources :