Voir la notice de l'article provenant de la source Numdam
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence 𝒪(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion (β = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.
@article{M2AN_2013__47_6_1845_0, author = {Deng, W. H. and Hesthaven, J. S.}, title = {Local {Discontinuous} {Galerkin} methods for fractional diffusion equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1845--1864}, publisher = {EDP-Sciences}, volume = {47}, number = {6}, year = {2013}, doi = {10.1051/m2an/2013091}, mrnumber = {3123379}, zbl = {1282.35400}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/} }
TY - JOUR AU - Deng, W. H. AU - Hesthaven, J. S. TI - Local Discontinuous Galerkin methods for fractional diffusion equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1845 EP - 1864 VL - 47 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/ DO - 10.1051/m2an/2013091 LA - en ID - M2AN_2013__47_6_1845_0 ER -
%0 Journal Article %A Deng, W. H. %A Hesthaven, J. S. %T Local Discontinuous Galerkin methods for fractional diffusion equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1845-1864 %V 47 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/ %R 10.1051/m2an/2013091 %G en %F M2AN_2013__47_6_1845_0
Deng, W. H.; Hesthaven, J. S. Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1845-1864. doi : 10.1051/m2an/2013091. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/
[1] Sobolev Spaces. Academic Press, New York (1975). | Zbl | MR
,[2] Fractional Fokker-Planck equation, solution, and application. Phys. Rev. E. 63 (2001) 046118.
,[3] A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267-279. | Zbl | MR
and ,[4] An Introduction to Fractional Calculus. World Scientific, Singapore (2000). | Zbl | MR
and ,[5] A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227 (2007) 886-897. | Zbl | MR
, , and ,[6] The local discontinuous Galerkin method for time-dependent convection diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | Zbl | MR
and ,[7] Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problem. Math. Comput. 71 (2001) 455-478. | Zbl | MR
, , and ,[8] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1975). | Zbl | MR
,[9] Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys. 227 (2007) 1510-1522. | MR
,[10] Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47 (2008) 204-226. | MR
,[11] Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Eqs. 22 (2005) 558-576. | Zbl | MR
and ,[12] High-order nodal discontinuous Galerkin methods for Maxwell eigenvalue problem. Roy. Soc. London Ser. A 362 (2004) 493-524. | Zbl | MR
and ,[13] Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer-Verlag, New York, USA (2008). | Zbl | MR
and ,[14] High-order accurate Runge-Kutta (Local) discontinuous Galerkin methods for one- and two-dimensional fractional diffusion equations. Numer. Math. Theor. Meth. Appl. 5 (2012) 333-358. | Zbl | MR
and ,[15] Remarks on fractional derivatives. Appl. Math. Comput. 187 (2007) 777-784. | Zbl | MR
and ,[16] A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47 (2009) 2108-2131. | Zbl | MR
and ,[17] Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225 (2007) 1533-1552. | Zbl | MR
and ,[18] Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation. Numer. Algorithms 52 (2009) 69-88. | Zbl | MR
and ,[19] Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78 (2009) 1975-1995. | Zbl | MR
and ,[20] Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation. Numer. Algorithms 56 (2011) 159-184. | Zbl | MR
and ,[21] Superconvergence of a discontinuous Galerkin method for the fractional diffusion and wave equation, arXiv:1206.2686v1 (2012). | Zbl | MR
and ,[22] The random walk's guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000) 1-77. | Zbl | MR
and ,[23] A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220 (2007) 813-823. | Zbl | MR
and ,[24] A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40 (2002) 769-791. | Zbl | MR
and ,Cité par Sources :