Local Discontinuous Galerkin methods for fractional diffusion equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1845-1864

Voir la notice de l'article provenant de la source Numdam

We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence 𝒪(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion (β = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.

DOI : 10.1051/m2an/2013091
Classification : 35R11, 65M60, 65M12
Keywords: fractional derivatives, local discontinuous Galerkin methods, stability, convergence, error estimates
@article{M2AN_2013__47_6_1845_0,
     author = {Deng, W. H. and Hesthaven, J. S.},
     title = {Local {Discontinuous} {Galerkin} methods for fractional diffusion equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1845--1864},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {6},
     year = {2013},
     doi = {10.1051/m2an/2013091},
     mrnumber = {3123379},
     zbl = {1282.35400},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/}
}
TY  - JOUR
AU  - Deng, W. H.
AU  - Hesthaven, J. S.
TI  - Local Discontinuous Galerkin methods for fractional diffusion equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1845
EP  - 1864
VL  - 47
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/
DO  - 10.1051/m2an/2013091
LA  - en
ID  - M2AN_2013__47_6_1845_0
ER  - 
%0 Journal Article
%A Deng, W. H.
%A Hesthaven, J. S.
%T Local Discontinuous Galerkin methods for fractional diffusion equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1845-1864
%V 47
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/
%R 10.1051/m2an/2013091
%G en
%F M2AN_2013__47_6_1845_0
Deng, W. H.; Hesthaven, J. S. Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1845-1864. doi: 10.1051/m2an/2013091

Cité par Sources :