Voir la notice de l'article provenant de la source Numdam
We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence 𝒪(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion (β = 2). In the two classic limits, known schemes are recovered. We discuss stability and present an error analysis for the space semi-discretized scheme, which is supported through a few examples.
@article{M2AN_2013__47_6_1845_0, author = {Deng, W. H. and Hesthaven, J. S.}, title = {Local {Discontinuous} {Galerkin} methods for fractional diffusion equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1845--1864}, publisher = {EDP-Sciences}, volume = {47}, number = {6}, year = {2013}, doi = {10.1051/m2an/2013091}, mrnumber = {3123379}, zbl = {1282.35400}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/} }
TY - JOUR AU - Deng, W. H. AU - Hesthaven, J. S. TI - Local Discontinuous Galerkin methods for fractional diffusion equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 1845 EP - 1864 VL - 47 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/ DO - 10.1051/m2an/2013091 LA - en ID - M2AN_2013__47_6_1845_0 ER -
%0 Journal Article %A Deng, W. H. %A Hesthaven, J. S. %T Local Discontinuous Galerkin methods for fractional diffusion equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 1845-1864 %V 47 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013091/ %R 10.1051/m2an/2013091 %G en %F M2AN_2013__47_6_1845_0
Deng, W. H.; Hesthaven, J. S. Local Discontinuous Galerkin methods for fractional diffusion equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1845-1864. doi: 10.1051/m2an/2013091
Cité par Sources :