Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1627-1655.

Voir la notice de l'article provenant de la source Numdam

In this work, depending on the relation between the Deborah, the Reynolds and the aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model with a slip boundary condition at the bottom. The result has been announced by the authors in [G. Narbona-Reina, D. Bresch, Numer. Math. and Advanced Appl. Springer Verlag (2010)] and in the present paper, we provide a self-contained description, complete formal derivations and various numerical computations. In particular, we extend to FENE type systems the derivation of shallow-water models for Newtonian fluids that we can find for instance in [J.-F. Gerbeau, B. Perthame, Discrete Contin. Dyn. Syst. (2001)] which assume an appropriate relation between the Reynolds number and the aspect ratio with slip boundary condition at the bottom. Under a radial hypothesis at the leading order, for small Deborah number, we find an interesting formulation where polymeric effect changes the drag term in the second order shallow-water formulation (obtained by J.-F. Gerbeau, B. Perthame). We also discuss intermediate Deborah number with a fixed Reynolds number where a strong coupling is found through a nonlinear time-dependent Fokker-Planck equation. This generalizes, at a formal level, the derivation in [L. Chupin, Meth. Appl. Anal. (2009)] including non-linear effects (shallow-water framework).

DOI : 10.1051/m2an/2013081
Classification : 76A05, 76A10, 35Q84, 82D60, 74D10, 35Q30, 78M35
Keywords: viscoelastic flows, polymers, Fokker-Planck equation, non newtonian fluids, Deborah number, shallow-water system
@article{M2AN_2013__47_6_1627_0,
     author = {Narbona-Reina, Gladys and Bresch, Didier},
     title = {Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1627--1655},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {6},
     year = {2013},
     doi = {10.1051/m2an/2013081},
     mrnumber = {3110490},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013081/}
}
TY  - JOUR
AU  - Narbona-Reina, Gladys
AU  - Bresch, Didier
TI  - Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 1627
EP  - 1655
VL  - 47
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013081/
DO  - 10.1051/m2an/2013081
LA  - en
ID  - M2AN_2013__47_6_1627_0
ER  - 
%0 Journal Article
%A Narbona-Reina, Gladys
%A Bresch, Didier
%T Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 1627-1655
%V 47
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013081/
%R 10.1051/m2an/2013081
%G en
%F M2AN_2013__47_6_1627_0
Narbona-Reina, Gladys; Bresch, Didier. Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 6, pp. 1627-1655. doi : 10.1051/m2an/2013081. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2013081/

[1] C. Ancey, Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid. Mech. 142 (2007) 4-35. | Zbl

[2] N.J. Balmforth and R.V. Craster, A consistent thin-layer theory for Bingham plastics. J. Non-Newtonian Fluid Mech. 84 (1999) 65-81. | Zbl

[3] N.J. Balmforth, R.V. Craster and R. Sassi, Shallow viscoplastic flow on an inclined plane. J. Fluid Mech. 420 (2002) 1-29. | Zbl | MR

[4] J. Banasiak and J.R. Mika, Asymptotic analysis of the Fokker-Planck equations related to Brownian motion. Math. Mod. Meth. Appl. S. 4 (1994) 17-33. | Zbl | MR

[5] F. Bouchut and S. Boyaval, A new model for shallow elastic fluids. Preprint (2011), ArXiv:1110.0799[math.NA].

[6] D. Bresch, E.D. Fernández-Nieto, I.R. Ionescu and P. Vigneaux, Augmented Lagrangian Method and Compressible Visco-plastic Flows: Applications to Shallow Dense Avalanches. Adv. Math. Fluid Mech. (2010) 57-89. Doi: 10.1007/978-3-0346-0152-84. | Zbl | MR

[7] D. Bresch and P. Noble, Mathematical justification of a shallow water model. Methods Appl. Anal. 14 (2007) 87-118. | Zbl | MR

[8] E.C. Bingham, Fluidity and plasticity. Mc Graw-Hill (1922).

[9] R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamic polymeric liquids, in: Kinetic theory. John Wiley and Sons (1987).

[10] L. Chupin, The FENE model for viscoelastic thin film flows. Meth. Appl. Anal. 16 (2009) 217-262. | Zbl | MR

[11] M. Boutounet, L. Chupin, P. Noble and J.-P. Vila, Shallow water viscous ßows for arbitrary topography. Commun. Math. Sci. 6 (2008) 29-55. | Zbl | MR

[12] P. Degond, M. Lemou and M. Picasso, Viscoelastic fluid models derived from kinetic equations for polymers. SIAM J. Appl. Math. 62 (2002) 1501-1019. | Zbl | MR

[13] E.D. Fernández-Nieto and G. Narbona-Reina, Extension of WAF Type Methods to Non-Homogeneous Shallow-Water Equations with Pollutant. J. Sci. Comput. 36 (2008) 193-217. | Zbl | MR

[14] E.D. Fernández-Nieto, P. Noble and J.-P. Vila, Shallow Water equations for Non Newtonian fluids, J. Non-Newtonian Fluid Mech. 165 (2010) 712-732. | Zbl

[15] J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water, numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89-102. | Zbl | MR

[16] M. Guala and A. Stocchino, Large-scale flow structures in particle-wall collision at low Deborah numbers. Eur. J. Mech. B/Fluids 26 (2007) 511-530. | Zbl

[17] O.G. Harlen, J.M. Rallison and M.D. Chilcott, High-Deborah-Number flows of dilute polymer solutions. J. Non-Newtorian Fluid Mech. 34 (1990) 319-349. | Zbl

[18] A. Harnoy, The relation between CMD instability and Deborah number in differential type rheological equations. Rheol. Acta 32 (1993) 483-489.

[19] A. Harnoy, Bearing Design in Machinery Engineering Tribology and Lubrication. CRC Press (2002).

[20] W.H. Herschel and T. Bulkley, Measurement of consistency as applied to rubber-benzene solutions. Am. Soc. Test Proc. 26 (1926) 621-633.

[21] B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case. Math. Mod. Meth. Appl. S 12 (2002) 1205-1243. | Zbl | MR

[22] Y. Kwon, S.J. Kim and S. Kim, Finite element modeling of high Deborah number planar contration flows with rational function interpolation of the Leonov model. Korea-Australia Rheol. J. 15 (2003) 131-150.

[23] E. Lauga, Life at high Deborah number. Europhys. Lett. 86 (2009). Doi: 10.1209/0295-5075/86/64001.

[24] C. Le Bris, Systèmes multi-échelles: Modélisation et simulation. Springer-Verlag, Berlin (2005). | Zbl

[25] T. Li, E. Vanden-Eijnden, P. Zhang and W. E, Stochastic models of polymeric fluids at small Deborah number. J. Non-Newtonian Fluid Mech. 121 (2004) 117-125. | Zbl

[26] F. Lin, P. Zhang and Z. Zhang, On the Global Existence of Smooth Solution to the 2-D FENE Dumbbell Model. Commun. Math. Phys. 277 (2008) 531-553. | Zbl | MR

[27] A. Lozinski, R.G. Owens and G. Fang, A Fokker-Planck based numerical method for modelling non-homogeneous flows of dilute polymeric solutions. J. Non-Newtonian Fluid Mech. 122 (2004) 273-286. | Zbl

[28] F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topog- raphy, bottom friction and capillary effects, Eur. J. Mechanics-B/Fluids 26 (2007) 49-63. | Zbl | MR

[29] N. Masmoudi, Well-Posedness for the FENE Dumbbell Model of Polymeric Flows. Commun. Pure Appl. Math. 61 (2008) 1685-1714. | Zbl | MR

[30] A. Mellet and A. Vasseur, Asymptotic Analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes System of Equations. Commun. Math. Phys. 281 (2008) 573-596. | Zbl | MR

[31] G. Narbona-Reina and D. Bresch, On a shallow water model for non-newtonian fluids, Numer. Math. Adv. Appl. Springer Berlin, Heidelberg (2010) 693-701.

[32] G. Narbona-Reina, J.D. Zabsonré, E.D. Fernández-Nieto and D. Bresch, Derivation of a bilayer model for Shallow Water equations with viscosity. Numerical validation. CMES 43 (2009) 27-71. | Zbl | MR

[33] A. Oron, S.H. Davis and S.G. Bankoff, Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (1997) 931-980.

[34] H.C. Ottinger, Stochastic Processes in Polymeric Fluids. Springer-Verlag, Berlin (1996). | Zbl | MR

[35] M. Reiner, The Deborah number, Phys. Today 12 (1964) 62.

[36] S. Shao and E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resources 26 (2003) 787-800.

[37] J.A. Tichy and M.F. Modest, A Simple Low Deborah Numer Model for Unsteady Hydrodynamic Lubrication, Including Fluid Inertia. J. Rheology 24 (1980) 829-845.

[38] E.F. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley and Sons, England (2001). | Zbl

[39] H. Zhang and P. Zhang, Local Existence for the FENE-Dumbbell Model of Polymeric Fluids. Arch. Ration. Mech. Anal. 181 (2006) 373-400. | Zbl | MR

Cité par Sources :