Voir la notice de l'article provenant de la source Numdam
For a two phase incompressible flow we consider a diffuse interface model aimed at addressing the movement of three-phase (fluid-fluid-solid) contact lines. The model consists of the Cahn Hilliard Navier Stokes system with a variant of the Navier slip boundary conditions. We show that this model possesses a natural energy law. For this system, a new numerical technique based on operator splitting and fractional time-stepping is proposed. The method is shown to be unconditionally stable. We present several numerical illustrations of this scheme.
@article{M2AN_2013__47_3_743_0, author = {Salgado, Abner J.}, title = {A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {743--769}, publisher = {EDP-Sciences}, volume = {47}, number = {3}, year = {2013}, doi = {10.1051/m2an/2012047}, mrnumber = {3056407}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012047/} }
TY - JOUR AU - Salgado, Abner J. TI - A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 743 EP - 769 VL - 47 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012047/ DO - 10.1051/m2an/2012047 LA - en ID - M2AN_2013__47_3_743_0 ER -
%0 Journal Article %A Salgado, Abner J. %T A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 743-769 %V 47 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012047/ %R 10.1051/m2an/2012047 %G en %F M2AN_2013__47_3_743_0
Salgado, Abner J. A diffuse interface fractional time-stepping technique for incompressible two-phase flows with moving contact lines. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 3, pp. 743-769. doi: 10.1051/m2an/2012047
Cité par Sources :