The extended adjoint method
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 83-108

Voir la notice de l'article provenant de la source Numdam

Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need the fundamental solution of the problem; furthermore our approach allows to consider finite perturbations and not infinitesimal ones. This paper provides theoretical justifications in the linear case and presents some applications with topological perturbations, continuous perturbations and mesh perturbations. This proposed approach can also be used to update the solution of singularly perturbed problems.

DOI : 10.1051/m2an/2012020
Classification : 49Q10, 49Q12, 74P10, 74P15
Keywords: adjoint method, topology optimization, calculus of variations
@article{M2AN_2013__47_1_83_0,
     author = {Larnier, Stanislas and Masmoudi, Mohamed},
     title = {The extended adjoint method},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {83--108},
     publisher = {EDP-Sciences},
     volume = {47},
     number = {1},
     year = {2013},
     doi = {10.1051/m2an/2012020},
     mrnumber = {2968696},
     zbl = {1271.65102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/}
}
TY  - JOUR
AU  - Larnier, Stanislas
AU  - Masmoudi, Mohamed
TI  - The extended adjoint method
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2013
SP  - 83
EP  - 108
VL  - 47
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/
DO  - 10.1051/m2an/2012020
LA  - en
ID  - M2AN_2013__47_1_83_0
ER  - 
%0 Journal Article
%A Larnier, Stanislas
%A Masmoudi, Mohamed
%T The extended adjoint method
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2013
%P 83-108
%V 47
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/
%R 10.1051/m2an/2012020
%G en
%F M2AN_2013__47_1_83_0
Larnier, Stanislas; Masmoudi, Mohamed. The extended adjoint method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 83-108. doi: 10.1051/m2an/2012020

Cité par Sources :