Voir la notice de l'article provenant de la source Numdam
Searching for the optimal partitioning of a domain leads to the use of the adjoint method in topological asymptotic expansions to know the influence of a domain perturbation on a cost function. Our approach works by restricting to local subproblems containing the perturbation and outperforms the adjoint method by providing approximations of higher order. It is a universal tool, easily adapted to different kinds of real problems and does not need the fundamental solution of the problem; furthermore our approach allows to consider finite perturbations and not infinitesimal ones. This paper provides theoretical justifications in the linear case and presents some applications with topological perturbations, continuous perturbations and mesh perturbations. This proposed approach can also be used to update the solution of singularly perturbed problems.
@article{M2AN_2013__47_1_83_0, author = {Larnier, Stanislas and Masmoudi, Mohamed}, title = {The extended adjoint method}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {83--108}, publisher = {EDP-Sciences}, volume = {47}, number = {1}, year = {2013}, doi = {10.1051/m2an/2012020}, mrnumber = {2968696}, zbl = {1271.65102}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/} }
TY - JOUR AU - Larnier, Stanislas AU - Masmoudi, Mohamed TI - The extended adjoint method JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 83 EP - 108 VL - 47 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/ DO - 10.1051/m2an/2012020 LA - en ID - M2AN_2013__47_1_83_0 ER -
%0 Journal Article %A Larnier, Stanislas %A Masmoudi, Mohamed %T The extended adjoint method %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 83-108 %V 47 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2012020/ %R 10.1051/m2an/2012020 %G en %F M2AN_2013__47_1_83_0
Larnier, Stanislas; Masmoudi, Mohamed. The extended adjoint method. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 47 (2013) no. 1, pp. 83-108. doi: 10.1051/m2an/2012020
Cité par Sources :