Voir la notice de l'article provenant de la source Numdam
We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 - ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
@article{M2AN_2012__46_5_1107_0, author = {R\"osch, Arnd and Steinig, Simeon}, title = {\protect\emph{A priori }error estimates for a state-constrained elliptic optimal control problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1107--1120}, publisher = {EDP-Sciences}, volume = {46}, number = {5}, year = {2012}, doi = {10.1051/m2an/2011076}, zbl = {1271.65104}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011076/} }
TY - JOUR AU - Rösch, Arnd AU - Steinig, Simeon TI - A priori error estimates for a state-constrained elliptic optimal control problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1107 EP - 1120 VL - 46 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011076/ DO - 10.1051/m2an/2011076 LA - en ID - M2AN_2012__46_5_1107_0 ER -
%0 Journal Article %A Rösch, Arnd %A Steinig, Simeon %T A priori error estimates for a state-constrained elliptic optimal control problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1107-1120 %V 46 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011076/ %R 10.1051/m2an/2011076 %G en %F M2AN_2012__46_5_1107_0
Rösch, Arnd; Steinig, Simeon. A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1107-1120. doi : 10.1051/m2an/2011076. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2011076/
[1] Sobolev spaces. Academic Press, San Diego (2007). | Zbl | MR
and ,[2] Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623-727. | Zbl | MR
, and ,[3] A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309-325. | Zbl | MR
and ,[4] Interpolation spaces. Springer, Berlin (1976). | Zbl
and ,[5] Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | Zbl | MR
, and ,[6] Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 1309-1322. | Zbl | MR
,[7] Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581-600. | Zbl | MR | mathdoc-id | EuDML
and ,[8] Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195-212. | Zbl | MR
and ,[9] Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008). | Zbl | MR
, and ,[10] The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002). | Zbl | MR
,[11] Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251-284. | Zbl | MR
, and ,[12] Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | Zbl | MR
and ,[13] Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597-604. | Zbl
and ,[14] Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | Zbl | MR
,[15] The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865-888. | Zbl | MR
, and ,[16] Optimization with PDE Constraints. Springer-Verlag, Berlin (2009). | Zbl | MR
, , and ,[17] Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321-334. | Zbl | MR
and ,[18] Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51-85. | Zbl | MR
,[19] Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. | Zbl | MR
, and ,[20] Optimization of Elliptic Systems. Springer-Verlag, New York (2006). | Zbl | MR
, and ,[21] Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 69-77. | Zbl | MR
,[22] Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548-564. | Zbl
and ,[23] Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877-899. | Zbl | MR
,[24] Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414-442. | Zbl | MR
and ,[25] On the quasi-optimality in L∞ of the | Zbl | MR
and ,[26] Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000). | Zbl | MR
and ,[27] Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616-634. | Zbl | MR
,[28] Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).
,[29] The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 1771-1808. | Zbl | MR
,Cité par Sources :