Voir la notice de l'article provenant de la source Numdam
The goal of our paper is to introduce basis functions for the finite element discretization of a second order linear elliptic operator with rough or highly oscillating coefficients. The proposed basis functions are inspired by the classic idea of component mode synthesis and exploit an orthogonal decomposition of the trial subspace to minimize the energy. Numerical experiments illustrate the effectiveness of the proposed basis functions.
@article{M2AN_2010__44_3_401_0, author = {Hetmaniuk, Ulrich L. and Lehoucq, Richard B.}, title = {A special finite element method based on component mode synthesis}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {401--420}, publisher = {EDP-Sciences}, volume = {44}, number = {3}, year = {2010}, doi = {10.1051/m2an/2010007}, mrnumber = {2666649}, zbl = {1190.65173}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010007/} }
TY - JOUR AU - Hetmaniuk, Ulrich L. AU - Lehoucq, Richard B. TI - A special finite element method based on component mode synthesis JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2010 SP - 401 EP - 420 VL - 44 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010007/ DO - 10.1051/m2an/2010007 LA - en ID - M2AN_2010__44_3_401_0 ER -
%0 Journal Article %A Hetmaniuk, Ulrich L. %A Lehoucq, Richard B. %T A special finite element method based on component mode synthesis %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2010 %P 401-420 %V 44 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2010007/ %R 10.1051/m2an/2010007 %G en %F M2AN_2010__44_3_401_0
Hetmaniuk, Ulrich L.; Lehoucq, Richard B. A special finite element method based on component mode synthesis. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 44 (2010) no. 3, pp. 401-420. doi: 10.1051/m2an/2010007
Cité par Sources :