Voir la notice de l'article provenant de la source Numdam
In this paper, we present an abstract framework which describes algebraically the derivation of order conditions independently of the nature of differential equations considered or the type of integrators used to solve them. Our structure includes a Hopf algebra of functions, whose properties are used to answer several questions of prime interest in numerical analysis. In particular, we show that, under some mild assumptions, there exist integrators of arbitrarily high orders for arbitrary (modified) vector fields.
@article{M2AN_2009__43_4_607_0, author = {Chartier, Philippe and Murua, Ander}, title = {An algebraic theory of order}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {607--630}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009029}, mrnumber = {2542867}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009029/} }
TY - JOUR AU - Chartier, Philippe AU - Murua, Ander TI - An algebraic theory of order JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 607 EP - 630 VL - 43 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009029/ DO - 10.1051/m2an/2009029 LA - en ID - M2AN_2009__43_4_607_0 ER -
%0 Journal Article %A Chartier, Philippe %A Murua, Ander %T An algebraic theory of order %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 607-630 %V 43 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009029/ %R 10.1051/m2an/2009029 %G en %F M2AN_2009__43_4_607_0
Chartier, Philippe; Murua, Ander. An algebraic theory of order. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 607-630. doi : 10.1051/m2an/2009029. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009029/
[1] Algebraic structures on ordered rooted trees and their significance to Lie group integrators, in Group theory and numerical analysis, CRM Proc. Lecture Notes, Amer. Math. Soc., Providence R.I. (2005) 49-63. | Zbl | MR
and ,[2] Lie groups and Lie algebras. Springer-Verlag, Berlin-New York (1989). | MR
,[3] An algebraic theory of integration methods. Math. Comput. 26 (1972) 79-106. | Zbl | MR
,[4] A primer of Hopf algebras, in Frontiers in number theory, physics, and geometry II. Springer, Berlin (2007) 537-615. | MR | Zbl
,[5] Preserving first integrals and volume forms of additively split systems. IMA J. Numer. Anal. 27 (2007) 381-405. | Zbl | MR
and ,[6] An algebraic approach to invariant preserving integators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575-590. | Zbl | MR
, and ,[7] Hopf algebras, cyclic cohomology and the transverse index theorem. Commun. Math. Phys. 198 (1998). | Zbl | MR
and ,[8] Möbius functions, incidence algebras and power-series representations, in Lecture Notes in Mathematics 1202, Springer-Verlag (1986). | Zbl | MR
,[9] Geometric Numerical Integration - Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics 31. Springer, Berlin (2006). | Zbl | MR
, and ,[10] Basic theory of algebraic groups and Lie algebras. Springer-Verlag (1981). | Zbl | MR
,[11] Quasi-shuffle products. J. Algebraic Comb. 11 (2000) 49-68. | Zbl | MR
,[12] On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2 (1998) 303-334. | Zbl | MR
,[13] On the structure of Hopf algebras. Ann. Math. 81 (1965) 211-264. | Zbl | MR
and ,[14] On the Hopf algebraic structure of Lie group integrators. Found. Comput. Math. 8 (2008) 227-257. | Zbl | MR
and ,[15] Formal series and numerical integrators, Part i: Systems of ODEs and symplectic integrators. Appl. Numer. Math. 29 (1999) 221-251. | Zbl | MR
,[16] The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Comput. Math. 6 (2006) 387-426. | Zbl | MR
,[17] Order conditions for numerical integrators obtained by composing simpler integrators. Phil. Trans. R. Soc. A 357 (1999) 1079-1100. | Zbl | MR
and ,Cité par Sources :