Voir la notice de l'article provenant de la source Numdam
In this paper, we study the linear Schrödinger equation over the -dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are exponentially long with the time discretization parameter. We here refer to Gevrey regularity, and our estimates turn out to be uniform in the space discretization parameter. This paper extends [G. Dujardin and E. Faou, Numer. Math. 97 (2004) 493-535], where a similar result has been obtained in the semi-discrete situation, i.e. when the mere time variable is discretized and space is kept a continuous variable.
@article{M2AN_2009__43_4_651_0, author = {Castella, Fran\c{c}ois and Dujardin, Guillaume}, title = {Propagation of {Gevrey} regularity over long times for the fully discrete {Lie} {Trotter} splitting scheme applied to the linear {Schr\"odinger} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {651--676}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009028}, mrnumber = {2542870}, zbl = {1171.65089}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009028/} }
TY - JOUR AU - Castella, François AU - Dujardin, Guillaume TI - Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 651 EP - 676 VL - 43 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009028/ DO - 10.1051/m2an/2009028 LA - en ID - M2AN_2009__43_4_651_0 ER -
%0 Journal Article %A Castella, François %A Dujardin, Guillaume %T Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 651-676 %V 43 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009028/ %R 10.1051/m2an/2009028 %G en %F M2AN_2009__43_4_651_0
Castella, François; Dujardin, Guillaume. Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 651-676. doi : 10.1051/m2an/2009028. http://geodesic.mathdoc.fr/articles/10.1051/m2an/2009028/
[1] Birkhoff normal form for PDEs with tame modulus. Duke Math. J. 135 (2006) 507-567. | Zbl | MR
and ,[2] Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26-40. | Zbl | MR
, and ,[3] Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197-223. | Zbl | MR
,[4] Long-time analysis of nonlinearly perturbed wave equations via modulated Fourier expansions. Arch. Ration. Mech. Anal. 187 (2008) 341-368. | Zbl | MR
, and ,[5] Analyse de méthodes d'intégration en temps des équation de Schrödinger. Ph.D. Thesis, University Rennes 1, France (2008).
,[6] Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential. Numer. Math. 108 (2007) 223-262. | Zbl | MR
and ,[7] Long time behavior of splitting methods applied to the linear Schrödinger equation. C. R. Math. Acad. Sci. Paris 344 (2007) 89-92. | Zbl | MR
and ,[8] KAM for non-linear Schrödinger equation. Preprint (2006).
and ,[9] Solving Ordinary Differential Equations I. Nonstiff Problems, Springer Series in Computational Mathematics 8. Second Edition, Springer, Berlin (1993). | Zbl | MR
, and ,[10] Geometric Numerical Integration - Structure-preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002). | Zbl | MR
, and ,[11] Error bounds for exponential operator splittings. BIT 40 (2000) 735-744. | Zbl | MR
and ,[12] Simulating Hamiltonian dynamics, Cambridge Monographs on Applied and Computational Mathematics 14. Cambridge University Press, Cambridge (2004). | Zbl | MR
and ,[13] On splitting methods for the Schödinger-Poisson and cubic nonlinear Schrödinger equations. Math. Comp. 77 (2008) 2141-2153. | MR
,[14] Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97 (2004) 493-535. | Zbl | MR
, and ,[15] Resonant and Diophantine step sizes in computing invariant tori of Hamiltonian systems. Nonlinearity 13 (2000) 299-308. | Zbl | MR
,Cité par Sources :