Voir la notice de l'article provenant de la source Numdam
It is known that the class of factorizing codes, i.e., codes satisfying the factorization conjecture formulated by Schützenberger, is closed under two operations: the classical composition of codes and substitution of codes. A natural question which arises is whether a finite set of operations exists such that each factorizing code can be obtained by using the operations in and starting with prefix or suffix codes. is named here a complete set of operations (for factorizing codes). We show that composition and substitution are not enough in order to obtain a complete set. Indeed, we exhibit a factorizing code over a two-letter alphabet , precisely a code, which cannot be obtained by decomposition or substitution.
@article{ITA_2006__40_1_29_0, author = {Felice, Clelia De}, title = {On a complete set of operations for factorizing codes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {29--52}, publisher = {EDP-Sciences}, volume = {40}, number = {1}, year = {2006}, doi = {10.1051/ita:2005040}, mrnumber = {2197282}, zbl = {1091.94017}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005040/} }
TY - JOUR AU - Felice, Clelia De TI - On a complete set of operations for factorizing codes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 29 EP - 52 VL - 40 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005040/ DO - 10.1051/ita:2005040 LA - en ID - ITA_2006__40_1_29_0 ER -
%0 Journal Article %A Felice, Clelia De %T On a complete set of operations for factorizing codes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 29-52 %V 40 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005040/ %R 10.1051/ita:2005040 %G en %F ITA_2006__40_1_29_0
Felice, Clelia De. On a complete set of operations for factorizing codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 1, pp. 29-52. doi : 10.1051/ita:2005040. http://geodesic.mathdoc.fr/articles/10.1051/ita:2005040/
[1] A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes, in Proc. DLT'99, G. Rozenberg, W. Thomas Eds. World Scientific (2000) 141-152. | Zbl
,[2] A Non-Ambiguous Decomposition of Regular Languages and Factorizing Codes. Discrete Appl. Math. 126 (2003) 129-165. | Zbl
,[3] Theory of Codes. Academic Press, New York (1985). | Zbl | MR
and ,[4] Trends in the Theory of Codes. Bull. EATCS 29 (1986) 84-95. | Zbl
and ,[5] Rational Series and Their Languages. EATCS Monogr. Theoret. Comput. Sci. 12 (1988). | Zbl | MR
and ,[6] Une famille remarquable de codes indécomposables, in Proc. Icalp 78. Lect. Notes Comput. Sci. 62 (1978) 105-112. | Zbl
,[7] Sur les codes factorisants1980) 1-8.
,[8] Synchronization and decomposability for a family of codes. Intern. J. Algebra Comput. 4 (1992) 367-393. | Zbl
and ,[9] Synchronization and decomposability for a family of codes: Part 2. Discrete Math. 140 (1995) 47-77. | Zbl
and ,[10] Variable-Length Maximal Codes, in Proc. Icalp 96. Lect. Notes Comput. Sci. 1099 (1996) 24-47. | Zbl
and ,[11] Indecomposable prefix codes and prime trees, in Proc. DLT 97 edited by S. Bozapadilis-Aristotel (1997).
, and ,[12] Sur un algorithme donnant les codes bipréfixes finis. Math. Syst. Theory 6 (1972) 221-225. | Zbl
,[13] Sur l'application du théorème de Suschkevitch à l'étude des codes rationnels complets, in Proc. Icalp 74. Lect. Notes Comput. Sci. (1974) 342-350. | Zbl
,[14] Construction of a family of finite maximal codes. Theoret. Comput. Sci. 63 (1989) 157-184. | Zbl
,[15] A partial result about the factorization conjecture for finite variable-length codes. Discrete Math. 122 (1993) 137-152. | Zbl
,[16] An application of Hajós factorizations to variable-length codes. Theoret. Comput. Sci. 164 (1996) 223-252. | Zbl
,[17] Factorizing Codes and Schützenberger Conjectures, in Proc. MFCS 2000. Lect. Notes Comput. Sci. 1893 (2000) 295-303. | Zbl
,[18] On some Schützenberger Conjectures. Inform. Comp. 168 (2001) 144-155. | Zbl
,[19] An enhanced property of factorizing codes. Theor. Comput. Sci. 340 (2005) 240-256. | Zbl
,[20] Some results on finite maximal codes. RAIRO-Inform. Theor. Appl. 19 (1985) 383-403. | Zbl | mathdoc-id
and ,[21] Solution partielle de la conjecture de factorisation des codes. C.R. Acad. Sci. Paris 302 (1986) 169-170. | Zbl
and ,[22] A three-word code which is not prefix-suffix composed. Theor. Comput. Sci. 163 (1996) 145-160. | Zbl
,[23] Abelian groups. Pergamon Press, New York (1960). | Zbl | MR
,[24] Sur la factorisation des groupes abéliens. Casopis Pest. Mat. Fys. 74 (1950) 157-162. | Zbl
,[25] Sur une propriété des polynômes de la division du cercle. C.R. Acad. Sci. Paris 240 (1937) 397-399. | JFM
and ,[26] A note on codes having no finite completions. Inform. Proc. Lett. 55 (1995) 185-188. | Zbl
,[27] Hajós factorizations and completion of codes. Theor. Comput. Sci. 182 (1997) 245-256. | Zbl
,[28] Locally complete sets and finite decomposable codes. Theor. Comput. Sci. 273 (2002) 185-196. | Zbl
and ,[29] Éléments de la théorie générale des codes, in Automata Theory, edited by E. Caianiello. Academic Press, New York (1966) 278-294. | Zbl
,[30] Codes asynchrones. Bull. Soc. Math. France 105 (1977) 385-404. | Zbl | mathdoc-id
,[31] Polynôme d'un code1980) 169-176.
,[32] Un problème élémentaire de la théorie de l'information, Théorie de l'Information, Colloques Internat. CNRS, Cachan 276 (1977) 249-260. | Zbl
and ,[33] On codes having no finite completions. Discrete Math. 17 (1977) 309-316. | Zbl
,[34] Codes and local constraints. Theor. Comput. Sci. 72 (1990) 55-64. | Zbl
,[35] Completing codes. RAIRO-Inf. Theor. Appl. 23 (1989) 135-147. | Zbl | mathdoc-id
, and ,[36] On the lattice of prefix codes. Theor. Comput. Sci. 289 (2002) 755-782. | Zbl
and ,[37] Sulla fattorizzazione dei codici. Ricerche di Mat. XXXII (1983) 115-130. | Zbl
,[38] Non commutative factorization of variable-length codes. J. Pure Appl. Algebra 36 (1985) 167-186. | Zbl
,[39] On the factorisation of finite abelian groups. Acta Math. Acad. Sci. Hungaricae 8 (1957) 65-86. | Zbl
,[40] Une théorie algébrique du codage, Séminaire Dubreil-Pisot 1955-56, exposé No. 15 (1955), 24 p. | mathdoc-id
,[41] Construction de codes indécomposables. RAIRO-Inf. Theor. Appl. 19 (1985) 165-178. | Zbl | mathdoc-id
,[42] Two classes of factorizing codes - -codes and -codes, in Words, Languages and Combinatorics II, edited by M. Ito and H. Jürgensen. World Scientific (1994) 477-483. | Zbl
and ,Cité par Sources :