The perfection and recognition of bull-reducible Berge graphs
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 145-160.

Voir la notice de l'article provenant de la source Numdam

The recently announced Strong Perfect Graph Theorem states that the class of perfect graphs coincides with the class of graphs containing no induced odd cycle of length at least 5 or the complement of such a cycle. A graph in this second class is called Berge. A bull is a graph with five vertices x,a,b,c,d and five edges xa,xb,ab,ad,bc. A graph is bull-reducible if no vertex is in two bulls. In this paper we give a simple proof that every bull-reducible Berge graph is perfect. Although this result follows directly from the Strong Perfect Graph Theorem, our proof leads to a recognition algorithm for this new class of perfect graphs whose complexity, O(n 6 ), is much lower than that announced for perfect graphs.

DOI : 10.1051/ita:2005009
Classification : 05C17, 05C75, 05C85

Everett, Hazel  ; de Figueiredo, Celina M. H.  ; Klein, Sulamita  ; Reed, Bruce 1

1 McGill University, Canada;
@article{ITA_2005__39_1_145_0,
     author = {Everett, Hazel and de Figueiredo, Celina M. H. and Klein, Sulamita and Reed, Bruce},
     title = {The perfection and recognition of bull-reducible {Berge} graphs},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {145--160},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {1},
     year = {2005},
     doi = {10.1051/ita:2005009},
     mrnumber = {2132584},
     zbl = {1063.05055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/}
}
TY  - JOUR
AU  - Everett, Hazel
AU  - de Figueiredo, Celina M. H.
AU  - Klein, Sulamita
AU  - Reed, Bruce
TI  - The perfection and recognition of bull-reducible Berge graphs
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2005
SP  - 145
EP  - 160
VL  - 39
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/
DO  - 10.1051/ita:2005009
LA  - en
ID  - ITA_2005__39_1_145_0
ER  - 
%0 Journal Article
%A Everett, Hazel
%A de Figueiredo, Celina M. H.
%A Klein, Sulamita
%A Reed, Bruce
%T The perfection and recognition of bull-reducible Berge graphs
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2005
%P 145-160
%V 39
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/
%R 10.1051/ita:2005009
%G en
%F ITA_2005__39_1_145_0
Everett, Hazel; de Figueiredo, Celina M. H.; Klein, Sulamita; Reed, Bruce. The perfection and recognition of bull-reducible Berge graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 145-160. doi : 10.1051/ita:2005009. http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/

[1] C. Berge and V. Chvátal, Topics on Perfect Graphs. North-Holland, Amsterdam, Ann. Discrete Math. 21 (1984). | Zbl | MR

[2] V. Chvátal, Star-cutsets and perfect graphs. J. Combin. Theory Ser. B 39 (1985) 189-199. | Zbl

[3] M. Chudnovsky, G. Cornuejols, X. Liu, P. Seymour and K. Vuskovic, Cleaning for Bergeness, manuscript (2003).

[4] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas, The Strong Perfect Graph Theorem, manuscript (2003).

[5] M. Chudnovsky and P. Seymour, Recognizing Berge graphs, manuscript (2003).

[6] V. Chvátal and N. Sbihi, Bull-free Berge graphs are perfect. Graphs Combin. 3 (1987) 127-139. | Zbl

[7] C.M.H. De Figueiredo, F. Maffray and O. Porto, On the structure of bull-free perfect graphs. Graphs Combin. 13 (1997) 31-55. | Zbl

[8] C.M.H. De Figueiredo, F. Maffray and O. Porto, On the structure of bull-free perfect graphs, 2: The weakly chordal case. Graphs Combin. 17 (2001) 435-456. | Zbl

[9] M. Grötschel, L. Lovász and A. Schrijver, Polynomial algorithms for perfect graphs, in Topics on Perfect Graphs, edited by C. Berge and V. Chvátal. North-Holland, Amsterdam, Ann. Discrete Math. 21 (1984) 325-356. | Zbl

[10] R.B. Hayward, Discs in unbreakable graphs. Graphs Combin. 11 (1995) 249-254. | Zbl

[11] R.B. Hayward, Bull-free weakly chordal perfectly orderable graphs. Graphs Combin. 17 (2001) 479-500. | Zbl

[12] B. Jamison and S. Olariu, P 4 -reducible graphs - a class of uniquely tree-representable graphs. Stud. Appl. Math. 81 (1989) 79-87. | Zbl

[13] X. Liu, G. Cornuejols and K. Vuskovic, A polynomial algorithm for recognizing perfect graphs, manuscript (2003).

[14] L. Lovász, Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2 (1972) 253-267. | Zbl

[15] J.L. Ramirez-Alfonsin and B.A. Reed, Perfect Graphs. Wiley (2001). | Zbl | MR

[16] B. Reed and N. Sbihi, Recognizing bull-free perfect graphs. Graphs Combin. 11 (1995) 171-178. | Zbl

Cité par Sources :