Voir la notice de l'article provenant de la source Numdam
The recently announced Strong Perfect Graph Theorem states that the class of perfect graphs coincides with the class of graphs containing no induced odd cycle of length at least 5 or the complement of such a cycle. A graph in this second class is called Berge. A bull is a graph with five vertices and five edges . A graph is bull-reducible if no vertex is in two bulls. In this paper we give a simple proof that every bull-reducible Berge graph is perfect. Although this result follows directly from the Strong Perfect Graph Theorem, our proof leads to a recognition algorithm for this new class of perfect graphs whose complexity, , is much lower than that announced for perfect graphs.
Everett, Hazel  ; de Figueiredo, Celina M. H.  ; Klein, Sulamita  ; Reed, Bruce 1
@article{ITA_2005__39_1_145_0, author = {Everett, Hazel and de Figueiredo, Celina M. H. and Klein, Sulamita and Reed, Bruce}, title = {The perfection and recognition of bull-reducible {Berge} graphs}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {145--160}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005009}, mrnumber = {2132584}, zbl = {1063.05055}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/} }
TY - JOUR AU - Everett, Hazel AU - de Figueiredo, Celina M. H. AU - Klein, Sulamita AU - Reed, Bruce TI - The perfection and recognition of bull-reducible Berge graphs JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 145 EP - 160 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/ DO - 10.1051/ita:2005009 LA - en ID - ITA_2005__39_1_145_0 ER -
%0 Journal Article %A Everett, Hazel %A de Figueiredo, Celina M. H. %A Klein, Sulamita %A Reed, Bruce %T The perfection and recognition of bull-reducible Berge graphs %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 145-160 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/ %R 10.1051/ita:2005009 %G en %F ITA_2005__39_1_145_0
Everett, Hazel; de Figueiredo, Celina M. H.; Klein, Sulamita; Reed, Bruce. The perfection and recognition of bull-reducible Berge graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 145-160. doi : 10.1051/ita:2005009. http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/
[1] Topics on Perfect Graphs. North-Holland, Amsterdam, Ann. Discrete Math. 21 (1984). | Zbl | MR
and ,[2] Star-cutsets and perfect graphs. J. Combin. Theory Ser. B 39 (1985) 189-199. | Zbl
,[3] Cleaning for Bergeness, manuscript (2003).
, , , and ,[4] The Strong Perfect Graph Theorem, manuscript (2003).
, , and ,[5] Recognizing Berge graphs, manuscript (2003).
and ,[6] Bull-free Berge graphs are perfect. Graphs Combin. 3 (1987) 127-139. | Zbl
and ,[7] On the structure of bull-free perfect graphs. Graphs Combin. 13 (1997) 31-55. | Zbl
, and ,[8] On the structure of bull-free perfect graphs, 2: The weakly chordal case. Graphs Combin. 17 (2001) 435-456. | Zbl
, and ,[9] Polynomial algorithms for perfect graphs, in Topics on Perfect Graphs, edited by C. Berge and V. Chvátal. North-Holland, Amsterdam, Ann. Discrete Math. 21 (1984) 325-356. | Zbl
, and ,[10] Discs in unbreakable graphs. Graphs Combin. 11 (1995) 249-254. | Zbl
,[11] Bull-free weakly chordal perfectly orderable graphs. Graphs Combin. 17 (2001) 479-500. | Zbl
,[12] -reducible graphs - a class of uniquely tree-representable graphs. Stud. Appl. Math. 81 (1989) 79-87. | Zbl
and ,[13] A polynomial algorithm for recognizing perfect graphs, manuscript (2003).
, and ,[14] Normal hypergraphs and the weak perfect graph conjecture. Discrete Math. 2 (1972) 253-267. | Zbl
,[15] Perfect Graphs. Wiley (2001). | Zbl | MR
and ,[16] Recognizing bull-free perfect graphs. Graphs Combin. 11 (1995) 171-178. | Zbl
and ,Cité par Sources :