Voir la notice de l'article provenant de la source Numdam
The recently announced Strong Perfect Graph Theorem states that the class of perfect graphs coincides with the class of graphs containing no induced odd cycle of length at least 5 or the complement of such a cycle. A graph in this second class is called Berge. A bull is a graph with five vertices and five edges . A graph is bull-reducible if no vertex is in two bulls. In this paper we give a simple proof that every bull-reducible Berge graph is perfect. Although this result follows directly from the Strong Perfect Graph Theorem, our proof leads to a recognition algorithm for this new class of perfect graphs whose complexity, , is much lower than that announced for perfect graphs.
Everett, Hazel  ; de Figueiredo, Celina M. H.  ; Klein, Sulamita  ; Reed, Bruce 1
@article{ITA_2005__39_1_145_0, author = {Everett, Hazel and de Figueiredo, Celina M. H. and Klein, Sulamita and Reed, Bruce}, title = {The perfection and recognition of bull-reducible {Berge} graphs}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {145--160}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/ita:2005009}, mrnumber = {2132584}, zbl = {1063.05055}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/} }
TY - JOUR AU - Everett, Hazel AU - de Figueiredo, Celina M. H. AU - Klein, Sulamita AU - Reed, Bruce TI - The perfection and recognition of bull-reducible Berge graphs JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 145 EP - 160 VL - 39 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/ DO - 10.1051/ita:2005009 LA - en ID - ITA_2005__39_1_145_0 ER -
%0 Journal Article %A Everett, Hazel %A de Figueiredo, Celina M. H. %A Klein, Sulamita %A Reed, Bruce %T The perfection and recognition of bull-reducible Berge graphs %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 145-160 %V 39 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2005009/ %R 10.1051/ita:2005009 %G en %F ITA_2005__39_1_145_0
Everett, Hazel; de Figueiredo, Celina M. H.; Klein, Sulamita; Reed, Bruce. The perfection and recognition of bull-reducible Berge graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 145-160. doi: 10.1051/ita:2005009
Cité par Sources :