An upper bound on the space complexity of random formulae in resolution
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 329-339
Cet article a éte moissonné depuis la source Numdam
We prove that, with high probability, the space complexity of refuting a random unsatisfiable Boolean formula in -CNF on variables and clauses is .
DOI :
10.1051/ita:2003003
Classification :
68Q25, 03B05, 03F20
Keywords: random formulae, space complexity, satisfiability threshold
Keywords: random formulae, space complexity, satisfiability threshold
@article{ITA_2002__36_4_329_0,
author = {Zito, Michele},
title = {An upper bound on the space complexity of random formulae in resolution},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {329--339},
year = {2002},
publisher = {EDP-Sciences},
volume = {36},
number = {4},
doi = {10.1051/ita:2003003},
mrnumber = {1965420},
zbl = {1034.68050},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ita:2003003/}
}
TY - JOUR AU - Zito, Michele TI - An upper bound on the space complexity of random formulae in resolution JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 329 EP - 339 VL - 36 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita:2003003/ DO - 10.1051/ita:2003003 LA - en ID - ITA_2002__36_4_329_0 ER -
%0 Journal Article %A Zito, Michele %T An upper bound on the space complexity of random formulae in resolution %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 329-339 %V 36 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita:2003003/ %R 10.1051/ita:2003003 %G en %F ITA_2002__36_4_329_0
Zito, Michele. An upper bound on the space complexity of random formulae in resolution. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 4, pp. 329-339. doi: 10.1051/ita:2003003
Cité par Sources :