Uncountable classical and quantum complexity classes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 111-126

Voir la notice de l'article provenant de la source Numdam

It is known that poly-time constant-space quantum Turing machines (QTMs) and logarithmic-space probabilistic Turing machines (PTMs) recognize uncountably many languages with bounded error (A.C. Cem Say and A. Yakaryılmaz, Magic coins are useful for small-space quantum machines. Quant. Inf. Comput. 17 (2017) 1027–1043). In this paper, we investigate more restricted cases for both models to recognize uncountably many languages with bounded error. We show that double logarithmic space is enough for PTMs on unary languages in sweeping reading mode or logarithmic space for one-way head. On unary languages, for quantum models, we obtain middle logarithmic space for counter machines. For binary languages, arbitrary small non-constant space is enough for PTMs even using only counter as memory. For counter machines, when restricted to polynomial time, we can obtain the same result for linear space. For constant-space QTMs, we obtain the result for a restricted sweeping head, known as restarting realtime.

DOI : 10.1051/ita/2018012
Classification : 68Q05, 68Q15, 68Q75
Keywords: Probabilistic and quantum computation, small-space bounds, unary languages, uncountable classes, counter machines

Dimitrijevs, Maksims 1 ; Yakaryılmaz, Abuzer 1

1
@article{ITA_2018__52_2-3-4_111_0,
     author = {Dimitrijevs, Maksims and Yakary{\i}lmaz, Abuzer},
     editor = {Bordihn, Henning and Nagy, Benedek and Vaszil, Gy\"orgy},
     title = {Uncountable classical and quantum complexity classes},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {111--126},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {2-3-4},
     year = {2018},
     doi = {10.1051/ita/2018012},
     mrnumber = {3915304},
     zbl = {1425.68126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2018012/}
}
TY  - JOUR
AU  - Dimitrijevs, Maksims
AU  - Yakaryılmaz, Abuzer
ED  - Bordihn, Henning
ED  - Nagy, Benedek
ED  - Vaszil, György
TI  - Uncountable classical and quantum complexity classes
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2018
SP  - 111
EP  - 126
VL  - 52
IS  - 2-3-4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ita/2018012/
DO  - 10.1051/ita/2018012
LA  - en
ID  - ITA_2018__52_2-3-4_111_0
ER  - 
%0 Journal Article
%A Dimitrijevs, Maksims
%A Yakaryılmaz, Abuzer
%E Bordihn, Henning
%E Nagy, Benedek
%E Vaszil, György
%T Uncountable classical and quantum complexity classes
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2018
%P 111-126
%V 52
%N 2-3-4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ita/2018012/
%R 10.1051/ita/2018012
%G en
%F ITA_2018__52_2-3-4_111_0
Dimitrijevs, Maksims; Yakaryılmaz, Abuzer. Uncountable classical and quantum complexity classes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 52 (2018) no. 2-3-4, pp. 111-126. doi: 10.1051/ita/2018012

Cité par Sources :