Voir la notice de l'article provenant de la source Numdam
Let be two distinct primitive words. According to Lentin−Schützenberger [9], the language contains at most one non-primitive word and if is not primitive, then . In this paper we give a sharper upper bound, namely, where stands for the floor of .
Echi, Othman 1, 2
@article{ITA_2017__51_3_141_0, author = {Echi, Othman}, title = {Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {141--166}, publisher = {EDP-Sciences}, volume = {51}, number = {3}, year = {2017}, doi = {10.1051/ita/2017012}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2017012/} }
TY - JOUR AU - Echi, Othman TI - Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$ JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 141 EP - 166 VL - 51 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2017012/ DO - 10.1051/ita/2017012 LA - en ID - ITA_2017__51_3_141_0 ER -
%0 Journal Article %A Echi, Othman %T Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$ %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 141-166 %V 51 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2017012/ %R 10.1051/ita/2017012 %G en %F ITA_2017__51_3_141_0
Echi, Othman. Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 3, pp. 141-166. doi: 10.1051/ita/2017012
Cité par Sources :