Voir la notice de l'article provenant de la source Numdam
The tenacity of a graph is a measure of the vulnerability of a graph. In this paper we investigate a refinement that involves the neighbor isolated version of this parameter. The neighbor isolated tenacity of a noncomplete connected graph is defined to beNIT(G) = min {|X|+ c(G/X) / i(G/X), i(G/X) ≥ 1} where the minimum is taken over all , the cut strategy of , is the number of components which are isolated vertices of and is the maximum order of the components of . Next, the relations between neighbor isolated tenacity and other parameters are determined and the neighbor isolated tenacity of some special graphs are obtained. Moreover, some results about the neighbor isolated tenacity of graphs obtained by graph operations are given.
Aslan, Ersin 1
@article{ITA_2015__49_4_269_0, author = {Aslan, Ersin}, title = {Neighbor {Isolated} {Tenacity} of {Graphs}}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {269--284}, publisher = {EDP-Sciences}, volume = {49}, number = {4}, year = {2015}, doi = {10.1051/ita/2016001}, mrnumber = {3507247}, zbl = {1346.68142}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ita/2016001/} }
TY - JOUR AU - Aslan, Ersin TI - Neighbor Isolated Tenacity of Graphs JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2015 SP - 269 EP - 284 VL - 49 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ita/2016001/ DO - 10.1051/ita/2016001 LA - en ID - ITA_2015__49_4_269_0 ER -
%0 Journal Article %A Aslan, Ersin %T Neighbor Isolated Tenacity of Graphs %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2015 %P 269-284 %V 49 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ita/2016001/ %R 10.1051/ita/2016001 %G en %F ITA_2015__49_4_269_0
Aslan, Ersin. Neighbor Isolated Tenacity of Graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 49 (2015) no. 4, pp. 269-284. doi: 10.1051/ita/2016001
Cité par Sources :